Canadian biodiversity: ecosystem status and trends 2010

Prepared by federal, provincial and territorial governments
Canadian biodiversity : ecosystem status and trends 2010. [electronic resource]

Issued also in French under title:
Biodiversité canadienne, état et tendances des écosystèmes en 2010.
Electronic monograph in PDF format.
Issued also in printed form.
ISBN 978-1-100-17033-6
Cat. no.: En14-26/2010E-PDF

1. Biotic Communities--Environmental aspects--Canada.
2. Biodiversity--Monitoring--Canada.
3. Environmental impact analysis--Canada.
6. Climatic changes--Environmental aspects--Canada.
I. Canada. Environment Canada II. Title: Ecosystem status and trends 2010.

GE160 C3 C33 2010 363.7'0630971 C2010-980233-0

Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified.

You are asked to:
• Exercise due diligence in ensuring the accuracy of the materials reproduced;
• Indicate both the complete title of the materials reproduced, as well as the author organization; and
• Indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with or with the endorsement of the Government of Canada.

Commercial reproduction and distribution is prohibited except with written permission from the Government of Canada's copyright administrator; Public Works and Government Services of Canada (PWGSC). For more information, please contact PWGSC at 613-996-6886 or at droitdauteur.copyright@tpsgc-pwgsc.gc.ca.

Photo credits are on photos. Further details for stock photography are on page 114.

Also available on the Internet:
www.biodivcanada.ca/ecosystems

This report should be cited as:
Canadian Biodiversity: Ecosystem Status and Trends 2010.

© Her Majesty the Queen in Right of Canada, 2010

Aussi disponible en français
Canadian biodiversity: ecosystem status and trends 2010

Prepared by federal, provincial and territorial governments
www.biodivcanada.ca/ecosystems
Canadian Biodiversity: Ecosystem Status and Trends 2010
is a collaborative effort of the federal, provincial, and territorial
governments of Canada. It was prepared by Joan Eamer, Trish Hayes, and
Risa Smith under the guidance of the Steering Committee and two
secretariats. Information was drawn from technical reports prepared for
each ecozone* and for national cross-cutting themes. A list of these
reports and their authors is provided on page 112 of this document.

Project Co-leads
Environment Canada: Risa Smith
Nova Scotia: Sherman Boates
British Columbia: Matt Austin

Steering Committee
Newfoundland and Labrador: Shelley Pardy Moores
Nova Scotia: Sherman Boates
Prince Edward Island: Dan McAskill, Rosemary Curley
New Brunswick: Steve Gordon, Vince Zelazny
Ontario: Bill Dalton
Manitoba: Veronika Kanya
Nunavut: Mathieu Dumond, Hillary Robison, Drikus Gissing
Northwest Territories: Suzanne Carrière
Saskatchewan: Ben Sawa, Randy Seguin, Doug Campbell,
    Sara James, Ann Riemer
Alberta: Ted Nason
British Columbia: Angeline Tillmanns, Rowena Rae, Matt Austin
Yukon: Tom Jung, Wendy Nixon, Michael White, Mike Connor
Fisheries and Oceans Canada: Henry Lear, Vanessa Sutton, Jake Rice
Environment Canada: Courtney Price, Julie Suzanne Pollock, Stephen Virc
Canadian Forest Service, Natural Resources Canada: John Hall,
    Mike Fullerton, Christian Malouin, Brenda McAfee
Agriculture and Agri-Food Canada: Melanie Dubois, Pat MacGregor,
    Sarah Kalf, Robin Mackay
Quebec (observer): Benoît Limoges

Secretariat (Environment Canada)
Trish Hayes (Chair), Joan Eamer, Risa Smith, Jodi Frisk, Isabelle Turcotte
Technical support: Kelly Badger, Cristina Spalvieri, Roxanne Koczwariski,
    Jennifer Elliot, Cynthia Johnston, Rob Rankin
Design support: Kelly Badger

Secretariat (Fisheries and Oceans Canada, marine ecozones*)
Andrea White, Patrice Simon, Robin Brown, Andrea Niemi,
    Réjean Dufour, Tana Worcester, Nadine Templeman
# Overview

About this assessment vi
Executive summary 1
Key findings at a glance 2
Synthesis of key findings 10

## Biomes

<table>
<thead>
<tr>
<th>Biome</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Forests</td>
<td>14</td>
</tr>
<tr>
<td>2. Grasslands</td>
<td>18</td>
</tr>
<tr>
<td>3. Wetlands</td>
<td>20</td>
</tr>
<tr>
<td>4. Lakes and rivers</td>
<td>26</td>
</tr>
<tr>
<td>5. Coastal</td>
<td>30</td>
</tr>
<tr>
<td>6. Marine</td>
<td>34</td>
</tr>
<tr>
<td>7. Ice across biomes</td>
<td>40</td>
</tr>
</tbody>
</table>

## Human/Ecosystem Interactions

<table>
<thead>
<tr>
<th>Interaction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Protected areas</td>
<td>48</td>
</tr>
<tr>
<td>9. Stewardship</td>
<td>52</td>
</tr>
<tr>
<td>10. Invasive non-native species</td>
<td>56</td>
</tr>
<tr>
<td>11. Contaminants</td>
<td>60</td>
</tr>
<tr>
<td>12. Nutrient loading and algal blooms</td>
<td>64</td>
</tr>
<tr>
<td>13. Acid deposition</td>
<td>68</td>
</tr>
<tr>
<td>14. Climate change</td>
<td>70</td>
</tr>
<tr>
<td>15. Ecosystem services</td>
<td>74</td>
</tr>
</tbody>
</table>

## Habitat, Wildlife, and Ecosystem Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Agricultural landscapes as habitat</td>
<td>80</td>
</tr>
<tr>
<td>17. Species of special interest: economic, cultural, or ecological</td>
<td>82</td>
</tr>
<tr>
<td>18. Primary productivity</td>
<td>94</td>
</tr>
<tr>
<td>19. Natural disturbances</td>
<td>96</td>
</tr>
<tr>
<td>20. Food webs</td>
<td>100</td>
</tr>
</tbody>
</table>

## Science/Policy Interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Biodiversity monitoring, research, information management, and reporting</td>
<td>104</td>
</tr>
<tr>
<td>22. Rapid changes and thresholds</td>
<td>108</td>
</tr>
</tbody>
</table>

## Contributors and References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributors</td>
<td>112</td>
</tr>
<tr>
<td>References</td>
<td>115</td>
</tr>
</tbody>
</table>
ABOUT THIS ASSESSMENT

The Canadian Councils of Resource Ministers developed a Biodiversity Outcomes Framework in 2006 to focus conservation and restoration actions under the Canadian Biodiversity Strategy. Canadian Biodiversity: Ecosystem Status and Trends 2010 is a first report under this framework. It assesses progress towards the framework’s goal of “Healthy and Diverse Ecosystems” and the two desired conservation outcomes, i) productive, resilient, diverse ecosystems with the capacity to recover and adapt, and ii) damaged ecosystems restored. The results of this assessment will be used to inform the national biodiversity agenda, complement the historical focus on species, and help set biodiversity priorities.

This report was prepared under the guidance of a steering committee of federal, provincial, and territorial government representatives. Over 500 experts participated in the preparation of foundation technical reports (see Contributors). Twenty-two recurring key findings emerged from the technical information and are presented here, organized under four interrelated themes: biomes; human/ecosystem interactions; habitat, wildlife, and ecosystem processes; and science/policy interface.

2010 is the International Year of Biodiversity. It is the intention of the Canadian Councils of Resource Ministers to use this report as a partial assessment of Canada’s progress towards the United Nations biodiversity target “to achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, regional and national level as a contribution to poverty alleviation and to the benefit of all life on Earth.”

Ecological Classification System – Ecozones+

A slightly modified version of the Terrestrial Ecozones of Canada, described in the National Ecological Framework for Canada, provided the ecosystem-based units for this assessment. Modifications included: adjustments to terrestrial boundaries to reflect improvements from ground-truthing exercises; the combination of three Arctic ecozones into one; the use of two ecoprovinces – Western Interior Basin and Newfoundland Boreal; the addition of nine marine ecosystem-based units; and the addition of the Great Lakes as a unit. This modified classification system is referred to as “ecozones+” throughout the assessment to avoid confusion with the more familiar “ecozones” of the original framework.
Canadian Biodiversity: Ecosystem Status and Trends 2010 is the first assessment of Canada's biodiversity from an ecosystem perspective. It presents 22 key findings derived from technical background reports. Some findings reveal that much of Canada’s natural endowment remains healthy, including large tracts of undisturbed wilderness, internationally significant wetlands, and thriving estuaries, particularly in sparsely populated or less accessible areas. Forest area is fairly stable. Over half of Canada’s landscape remains intact and relatively free from human infrastructure. Although much is in the more remote North, this also includes large tracts of boreal forest and coastal temperate rainforest. Canada maintains commercial and recreational freshwater and marine fisheries of significant economic and cultural importance.

Several stressors that impaired ecosystems in the past have been either removed or reduced. Some marine mammal populations are recovering from past overharvesting. Concentrations of contaminants now phased out of use, such as DDT and PCBs, are declining in wildlife. In the past 15 years, federal, provincial, and territorial terrestrial protected areas have increased in number, area, and diversity of ecosystems represented. Canadians have demonstrated their commitment to biodiversity conservation through the growing number of individuals, groups, and businesses involved in stewardship initiatives.

Some key findings highlight areas of concern, where signals suggest that action is needed to maintain functioning ecosystems. These findings include loss of old forests, changes in river flows at critical times of the year, loss of wildlife habitat in agricultural landscapes, declines in certain bird populations, increases in wildfire, and significant shifts in marine, freshwater, and terrestrial food webs. Some contaminants recently detected in the environment are known to be increasing in wildlife. Plant communities and animal populations are responding to climate change. Temperature increases, shifting seasons, and changes in precipitation, ice cover, snowpack, and frozen ground are interacting to alter ecosystems, sometimes in unpredictable ways.

Some key findings identify ecosystems in which natural processes are compromised or increased stresses are reaching critical thresholds. Examples include: fish populations that have not recovered despite the removal of fishing pressure; declines in the area and condition of grasslands, where grassland bird populations are dropping sharply; and fragmented forests that place forest-dwelling caribou at risk. The dramatic loss of sea ice in the Arctic has many current ecosystem impacts and is expected to trigger declines in ice-associated species such as polar bears. Nutrient loading is on the rise in over 20% of the water bodies sampled, including some of the Great Lakes where, 20 years ago, regulations successfully reduced nutrient inputs. This time, causes are more complex and solutions will likely be more difficult. Lakes affected by acid deposition have been slow to recover, even when acidifying air emissions have been reduced. Invasive non-native species have reached critical levels in the Great Lakes and elsewhere.

A strategy of detecting ecosystem change and acting before thresholds are crossed has the greatest likelihood of preventing biodiversity loss. Examples throughout the assessment demonstrate the excellent return on investment from early response and prevention. Restoration, although more costly than prevention, has also had successes.

Lessons have been learned from preparing this assessment. Canada’s long-term climate and hydrological monitoring programs ensure the reliability and relevance of climate and water trends in areas where station coverage is good. Equivalent monitoring of biodiversity and ecosystems is rare. Local and regional trends are helpful but usually cannot be extrapolated to a wider scale. Information collected for other purposes is often not useful for understanding changes in biodiversity and ecosystems. Relevant ecosystem-level information is less available than decision-makers may realize. Finally, this assessment would not have been possible without the combined efforts of federal, provincial, and territorial governments in sharing data, knowledge, and perspectives.
THEME: BIOMES
A biome is a large community of plants and animals that occupies a distinct type of environment. This section reports on six biomes and a seventh category of particular importance to Canadian ecosystems – ice across biomes.

1. FORESTS
At a national level, the extent of forests has changed little since 1990; at a regional level, loss of forest extent is significant in some places. The structure of some Canadian forests, including species composition, age classes, and size of intact patches of forest, has changed over longer time frames.

Forests cover 3.5 million km² (60%) of Canada’s landscape. Of this, about 70% is boreal forest. The northern boreal forest has relatively little human imprint, but the southern boreal forest is fragmented by human disturbance. Only 0.01 to 0.02% of Canada’s forest is lost annually to other types of land cover. Although old forests have shifted to young forests in some areas, old forests still make up 40% of both Newfoundland and Labrador’s boreal forest and British Columbia’s coastal rainforest. Ecosystems near northern and mountain treelines are changing. For example, trees are expanding northward along the Labrador coast and tree growth and density are increasing near treelines in the Yukon and northern Quebec.

2. GRASSLANDS
Native grasslands have been reduced to a fraction of their original extent. Although at a slower pace, declines continue in some areas. The health of many existing grasslands has also been compromised by a variety of stressors.

Grassland losses exceed those of other major biomes in North America. Most loss in Canada occurred before the 1930s as the result of conversion for cropland. Estimates of total loss prior to the 1990s include 97% of tallgrass/savannah in southern Ontario, 70% of prairie grasslands (by far the largest of Canada’s grasslands), and 19% of bunchgrass/sagebrush in British Columbia. Losses continue in some areas, particularly small, remnant patches. Grassland health has also suffered. Over the long term, changes in natural disturbance regimes due to factors like fire suppression and confined cattle grazing have had negative impacts on grasslands. Sound stewardship practices in some areas are helping to address the problem. Other stressors include invasive non-native species, forest encroachment, fragmentation, and intensification of agriculture.

3. WETLANDS
High loss of wetlands has occurred in southern Canada; loss and degradation continue due to a wide range of stressors. Some wetlands have been or are being restored.

Approximately 16% of Canada’s land area is covered by freshwater wetlands, making the country steward to about a quarter of the world’s remaining wetlands. Wetland conversion was rapid in southern Canada post-settlement, with an estimated 200,000 km² lost prior to 1990. Despite significant efforts to conserve and restore wetlands in some areas, overall loss and degradation continue. Wetlands near urban areas are particularly threatened, with 80 to 98% of original wetlands converted to other uses in or near Canada’s large urban centres. Current threats include conversion to other land uses, water regulation, pollution, and invasive non-native species. Climate change poses a significant threat to wetlands. In the North, wetland changes due to permafrost thaw and greater evaporation during warmer summers are already apparent.
4. LAKES AND RIVERS
Trends over the past 40 years influencing biodiversity in lakes and rivers include seasonal changes in magnitude of stream flows, increases in river and lake temperatures, decreases in lake levels, and habitat loss and fragmentation.

Annual low flows in natural streams decreased at many sites in southern Canada and increased at sites in the west and northwest. Annual peak flows decreased at many sites across Canada, but increased in the Atlantic Maritime. Other trends, such as changes in seasonal average flows, were also specific to regions and types of streams. Changes in stream flow affect aquatic life. For example, decreased low flows can cause problems for late-spawning fish and increase heat stress and predation for all fish. Trends in lakes include decreases in seasonal and year-to-year water-level fluctuations in some of the Great Lakes. In Lake Ontario, since 1960, water-level regulation has reduced plant diversity and altered habitat for animals living along the shoreline.

5. COASTAL
Coastal ecosystems, such as estuaries, salt marshes, and mud flats, are believed to be healthy in less-developed coastal areas, although there are exceptions. In developed areas, extent and quality of coastal ecosystems are declining as a result of habitat modification, erosion, and sea-level rise.

On the Atlantic coast, wetlands, dunes, and beaches are at risk from coastal development and increased erosion – and are known to be declining in some areas. The erosion results from several interacting factors: changes from development make the shoreline more vulnerable, and rising sea level combines with more intense storm surges. On the Pacific coast, development in the early 20th century resulted in loss of intertidal wetlands, mudflats, and estuarine habitat. Losses continue today, with increasing human populations. Eelgrass meadows are internationally recognized as productive, at-risk coastal ecosystems. There is evidence of recent rapid declines in eelgrass in areas of James Bay, the Atlantic Coast, and the Gulf of St. Lawrence.

6. MARINE
Observed changes in marine biodiversity over the past 50 years have been driven by a combination of physical factors and human activities, such as oceanographic and climate variability, and overexploitation. While certain marine mammals have recovered from past overharvesting, many commercial fisheries have not.

Management efforts to reverse long-term fisheries declines have been largely unsuccessful, hampered by shifts in ocean regimes and loss of habitat for spawning and rearing fish. Food webs in waters off all three of Canada’s coasts are changing. The most dramatic example is the increase in invertebrates, such as shrimp, following the collapse of Atlantic ground fish. Ocean changes include shifts to warmer, less salty seawater over the past few decades, a result of natural climate oscillations and, possibly, climate change. Ocean acidification, caused by the oceans absorbing the increased atmospheric carbon dioxide, is already occurring in Canada’s oceans, with severe consequences for marine biodiversity predicted by the end of this century.

7. ICE ACROSS BIOMES
Declining extent and thickness of sea ice, warming and thawing of permafrost, accelerating loss of glacier mass, and shortening of lake-ice seasons are detected across Canada’s biomes. Impacts, apparent now in some areas and likely to spread, include effects on species and food webs.

Ice is a defining feature of much of the Canadian landscape and many plants and animals are adapted to seasonally or permanently frozen environments. Loss of ice alters entire biomes – thawing permafrost is already changing frozen peatland ecosystems to wetlands in some areas. Over the long term, thawing permafrost will lead to shifts in plant and animal communities across the current permafrost zone. Sea ice has undergone the most dramatic, large-scale decline, especially in the last few years. There are direct impacts on species, including seals, polar bears, Arctic cod and Arctic foxes. Indirect effects include changes in coastal climate and impacts on Arctic food webs, including the range expansion of killer whales into ice-free areas.
THEME: HUMAN/ECOSYSTEM INTERACTIONS
Humans now dominate most ecosystems on Earth. In Canada, with more wilderness than most countries, this dominance is not always obvious – but even in remote areas, human influence is increasingly apparent. This section examines the status and trends of some of the actions Canadians are taking to conserve ecosystems, some ecosystem stressors that are by-products of human activity, and trends in services provided by healthy and diverse ecosystems.

8. PROTECTED AREAS
Both the extent and representativeness of the protected areas network have increased in recent years. In many places, the area protected is well above the United Nations 10% target. It is below the target in highly developed areas and the oceans.
As of May 2009, 9.4% of Canada’s land area and 0.64% of its ocean area had provincial, territorial, or federal protected-area designation. Large and small protected areas have a role to play in biodiversity conservation. Thirty-six protected areas in Canada are larger than 5,000 km², making up 59% of the total area protected. In several places, adjacent protected areas create large protected-area complexes. At the other end of the scale, 3,464 protected areas smaller than 10 km², which make up less than 1% of the total area protected, play an important role in protecting rare species and habitats. Progress has been made in identifying potential sites for marine protected areas, although designation of marine areas has been slow.

9. STEWARDSHIP
Stewardship activity in Canada is increasing, both in number and types of initiatives and in participation rates. The overall effectiveness of these activities in conserving and improving biodiversity and ecosystem health has not been fully assessed.
Over a million people and a thousand stewardship groups participate in stewardship activities in Canada – everything from community projects to government initiatives. Tax incentives, conservation easements, and the growth of land trusts have helped facilitate stewardship on private land. Also important are large, landscape-level initiatives. For example, the North American Waterfowl Management Plan has influenced the stewardship of over 70,000 km² of wetland, grassland, and agricultural habitat across Canada in the 2000s alone. Standards and codes of practice, such as forest and marine certification, are important tools in the stewardship of public and private lands and waters. Participation in all forms of stewardship has increased substantially since the 1980s.
10. INVASIVE NON-NATIVE SPECIES
Invasive non-native species are a significant stressor on ecosystem functions, processes, and structure in terrestrial, freshwater, and marine environments. This impact is increasing as numbers of invasive non-native species continue to rise and their distributions continue to expand.

Invasive non-native species are considered the second greatest threat to biodiversity worldwide, after habitat destruction. Ecosystems that are already altered or degraded are more vulnerable to colonization by aggressive non-native species. Non-native species are destroying valuable wetland and grassland habitat, are invading marine intertidal areas, and dominate the Great Lakes. Economic and ecological losses caused by invasive non-native species have been estimated at $5.7 billion annually in the Great Lakes alone. Wildlife diseases caused by non-native pathogens, such as West Nile virus, have killed thousands of birds and potentially threaten many different wildlife species.

11. CONTAMINANTS
Concentrations of legacy contaminants in terrestrial, freshwater, and marine systems have generally declined over the past 10 to 40 years. Concentrations of many emerging contaminants are increasing in wildlife; mercury is increasing in some wildlife in some areas.

Levels of legacy contaminants – banned or restricted chemicals, such as PCBs – have declined in wildlife in the Strait of Georgia, St. Lawrence Estuary, Great Lakes, Bay of Fundy, and the Arctic since the 1970s, although rates of decline in some areas have slowed in recent years. The recovery of peregrine falcons after the banning of DDT demonstrates that some species can rebound after the contaminant stress has been lifted. Flame retardants (PBDEs) are examples of emerging contaminants, which have more recently been found to spread through and accumulate in ecosystems. PBDE levels have increased since the 1980s in fish, birds, whales, and polar bears. Contaminants can directly affect wildlife health and reproduction and increase vulnerability to other stressors.

12. NUTRIENT LOADING AND ALGAL BLOOMS
Inputs of nutrients to both freshwater and marine systems, particularly in urban and agriculture-dominated landscapes, have led to algal blooms that may be a nuisance and/or may be harmful. Nutrient inputs have been increasing in some places and decreasing in others.

Fertilizers from agriculture, phosphates from detergents and industry, and sewage from towns and cities add nutrients to aquatic systems, sometimes causing algal blooms. In recent years, algal blooms have been reported in lakes, reservoirs, ponds, rivers, swamps, and estuaries across the southern half of the country. Some past successes in nutrient reductions, particularly in the Great Lakes, are now being reversed. Over the past 16 years, nitrogen has increased in 28% of water bodies sampled and decreased in 12%, while phosphorus has increased in 21% and decreased in 29%. Although harmful marine algal blooms occur naturally, they may be increasing in some coastal areas.
13. ACID DEPOSITION
Thresholds related to ecological impact of acid deposition, including acid rain, are exceeded in some areas, acidifying emissions are increasing in some areas, and biological recovery has not kept pace with emission reductions in other areas.
Acid deposition occurs when sulphur and nitrogen-based air pollutants react with water and settle to Earth. In aquatic systems, the survival of many species is threatened by the acidification of their habitat. Emissions have declined since 1980, but improvements in lake acidity have been slow to follow. Some areas, such as parts of the Boreal Shield, have acid deposition levels beyond the ability of the ecosystem to cope. The Atlantic Maritime has some of the most acidic waters and heavily affected fish habitat in North America. Although acidification is often considered an eastern issue, it is an increasing concern in parts of the West. In northwest Saskatchewan, for example, many lakes downwind of oil and gas development emissions are sensitive to acid deposition.

14. CLIMATE CHANGE
Rising temperatures across Canada, along with changes in other climatic variables over the past 50 years, have had both direct and indirect impacts on biodiversity in terrestrial, freshwater, and marine systems.
Canada’s climate has changed significantly since the 1950s. Temperatures have increased across the country, especially in winter and spring. Spring now arrives earlier, meaning snow melts earlier and growing seasons are longer. Precipitation has generally increased, especially in the North. The average annual temperature has increased by 1.4°C. No significant cooling trend has occurred at any location in any season. Changes in climate have led to widespread environmental changes, such as loss of sea ice. Some currently localized changes are likely to increase and become more widespread with continued warming. These include rising sea levels, higher seawater temperatures, and increases in wildfires. Ecosystems and species are affected by all of these changes, often in complex and unexpected ways that interact with other stressors, such as habitat fragmentation.

15. ECOSYSTEM SERVICES
Canada is well endowed with a natural environment that provides ecosystem services upon which our quality of life depends. In some areas where stressors have impaired ecosystem function, the cost of maintaining ecosystem services is high and deterioration in quantity, quality, and access to ecosystem services is evident.
Many of Canada’s vast wetlands, coastal ecosystems, and forests are healthy and provide billions of dollars in ecosystem services annually. Services include commercial, recreational, and subsistence food gathering, flood and drought control, sediment filtering, nutrient cycling, erosion control, and climate regulation. There are also signs of loss of ecosystem services. Increased erosion, spread of wildlife diseases, and less predictable river flows have been documented. Several commercial fisheries are declining. Subsistence opportunities are hampered by wildlife population declines, contaminants in culturally important species, and, in the North, by altered access to harvesting due to changes in ice and permafrost. Recreational opportunities are affected by closed beaches, fouled fishing equipment, and invasive non-native species.
THEME: HABITAT, WILDLIFE, AND ECOSYSTEM PROCESSES

The key findings in this section are related to aspects of abundance and diversity of wildlife. First, the capacity of agricultural lands to support wildlife is considered. Trends are then assessed for selected species groups of high economic, cultural, or ecological significance. Three aspects of ecosystem processes are examined: primary productivity, relations of predators and prey through food webs and population cycles, and the role of natural disturbance in forested ecosystems.

16. AGRICULTURAL LANDSCAPES AS HABITAT

The potential capacity of agricultural landscapes to support wildlife in Canada has declined over the past 20 years, largely due to the intensification of agriculture and the loss of natural and semi-natural land cover.

Agricultural landscapes cover 7% of Canada’s land area and provide important habitat for over 550 species of terrestrial vertebrates, including about half of the species assessed as at risk nationally. Natural areas, including wetlands, woodlands, and unimproved pasture, provide the highest biodiversity values, while croplands provide the lowest. Between 1986 and 2006 the capacity of agricultural landscapes to provide habitat for wildlife declined significantly across Canada. The main causes are the conversion of natural areas to cropland and more intensive use of agricultural land. The proportion of agricultural land classified as cropland increased from 46 to 53% over this period.

17. SPECIES OF SPECIAL INTEREST: ECONOMIC, CULTURAL, OR ECOLOGICAL

Many species of amphibians, fish, birds, and large mammals are of special economic, cultural, or ecological interest to Canadians. Some of these are declining in number and distribution, some are stable, and others are healthy or recovering.

Amphibians Twenty percent of native amphibians – frogs, toads and salamanders – are considered at risk of extinction in Canada. Declines of several amphibian populations since the mid-1990s have been documented in the Great Lakes Basin and the St. Lawrence River corridor. Trends for western Canada are not well documented. Habitat degradation and loss are the main causes of amphibian declines in Canada.

Fishes using freshwater habitat Freshwater species are at a high risk of extinction worldwide. In Canada 18% of freshwater and diadromous fish are Endangered or Threatened in all parts of their ranges. The number of Endangered or Threatened fishes has been increasing since the 1980s. The causes of declines vary across the country and include invasive non-native species, habitat loss, degradation, and fragmentation, overharvesting, pollution, and climate change.

Birds Since the 1970s, overall population declines have affected all landbird groups except forest birds. Birds of grassland and other open habitats exhibited the most marked declines, losing over 40% of their populations. Some common landbird species are also showing declines. Half of the 35 shorebird species assessed in 2000 showed a decline somewhere in their ranges. Trends for seabirds are mixed, but the number of populations in decline has increased since the 1980s. Waterfowl are generally healthy, although some species are in decline.

Caribou The range of caribou has contracted. Most northern herds are declining, some precipitously. Causes are not well understood and might include natural population cycles, climate change, increased impacts from human activity, changes in predation, and over-harvesting. Forest-dwelling woodland caribou are Threatened in the boreal forest, with many herds declining. The status of most herds in the northern mountain population is not well understood, while most herds in the southern mountain population are in decline. Woodland caribou are declining primarily because of loss and fragmentation of habitat.
18. PRIMARY PRODUCTIVITY
Primary productivity has increased on more than 20% of the vegetated land area of Canada over the past 20 years, as well as in some freshwater systems. The magnitude and timing of primary productivity are changing throughout the marine system.

The North, where temperature rise is highest, has experienced the largest increases in production of green vegetation. Productivity increases in southern Canada are likely related more to changes in land use than to changes in climate. Vegetation changes that correspond with northern Canada’s greening trend include a shift to shrubs and grasses where lichens and mosses once dominated. In Arctic lakes and ponds, a longer growing season for algae, due to earlier melting of lake ice in spring, is considered the strongest factor driving the observed increase in productivity. Marine primary productivity, however, shows long-term declines in most of the world’s ocean regions, including the Arctic, North Pacific and North Atlantic oceans.

19. NATURAL DISTURBANCES
The dynamics of natural disturbance regimes, such as fire and native insect outbreaks, are changing and this is reshaping the landscape. The direction and degree of change vary.

Natural disturbance regimes, such as fire and native insect outbreaks, are important drivers of biodiversity in forest and grassland ecosystems. Large fires, greater than 2 km², account for over 95% of the area burned, and over 90% of them occur in the boreal forest. Although highly variable, the annual area burned has increased since the 1960s. At the same time, fire is no longer a significant disturbance agent in parts of the country such as southern Ontario and the Prairies. No overall trend in native insect outbreaks is evident, although some insects, such as the mountain pine beetle, show significant change. The infestation of mountain pine beetle over the last decade was of unprecedented intensity, damaging over 163,000 km² of forest. Fire and insects affect each other and both are influenced by climate and management practices.

20. FOOD WEBS
Fundamental changes in relationships among species have been observed in marine, freshwater, and terrestrial environments. The loss or reduction of important components of food webs has greatly altered some ecosystems.

An example of the impact from a major reduction in one food web component is the decline of Diporeia, a small relative of shrimp and historically the dominant invertebrate in most of the Great Lakes. This decline has had major consequences for Great Lakes fish populations and commercial fisheries. Reduction in predators also affects the whole food web. Most populations of large native carnivores have declined severely in southern and eastern Canada, affecting abundance and diversity of prey species and small predators. Population cycles are important features of boreal forest and tundra ecosystems. Herbivores – especially the snowshoe hare in forests and small rodents in tundra – are at the heart of these cycles. There is emerging evidence that these population cycles are weakening at several locations in northern Canada.
THEME: SCIENCE/POLICY INTERFACE
Although the interface between science and policy was not the focus of this assessment, themes and ideas recurred throughout the development and review process and have been grouped into two categories. The first deals with the nature and quality of information available for assessing ecosystem status and trends in Canada. The second deals with the policy implications resulting from rapid and unexpected change and the crossing of ecological thresholds, especially in the context of a changing climate.

21. BIODIVERSITY MONITORING, RESEARCH, INFORMATION MANAGEMENT, AND REPORTING
Long-term, standardized, spatially complete, and readily accessible monitoring information, complemented by ecosystem research, provides the most useful findings for policy-relevant assessments of status and trends. The lack of this type of information in many areas has hindered development of this assessment.

Piecing together information from disparate sources is currently the only way to assess status and trends of Canada’s ecosystems. In some cases, there are good data sets backed by long-term monitoring programs. Information is sometimes available for status but not trends, or trend information is limited to a small geographic area over a short time interval. Often, information critical to the assessment of ecosystem health is missing. Reporting on status and trends requires more than monitoring results. The context, cause-and-effect linkages, and knowledge of ecosystem functioning that will tell a coherent story is drawn from ecological research. Improved collaboration among Canada’s ecological research, monitoring, and policy communities and institutions, focused on identifying and addressing policy-relevant questions, would enhance future assessments of status and trends.

22. RAPID CHANGES AND THRESHOLDS
Growing understanding of rapid and unexpected changes, interactions, and thresholds, especially in relation to climate change, points to a need for policy that responds and adapts quickly to signals of environmental change in order to avert major and irreversible biodiversity losses.

When thresholds have been crossed, ecosystems shift irrevocably from one state to another. Options for action are usually limited, expensive, and have a low probability of success. Taking earlier action, when ecosystem changes have been detected but thresholds have not yet been crossed, creates more options and a greater probability of reversing or stabilizing impacts. In some cases, early warning signals appear in a few locations or in a few individuals in a population. When it is possible to take preventative action in response to early warnings, the probability of success is greatest and the long-term costs are usually lower.
SYNTHESIS OF KEY FINDINGS

This diagram presents the status and trends of the key findings, as well as confidence in the conclusions drawn. The key findings are grouped in themes, each occupying a quarter of the diagram. They are presented as parts of a circle to highlight the holistic nature of ecosystems – these key findings are interrelated and their common, central focus is the health and diversity of ecosystems.

The topics in the left half of the circle are aspects of the ecosystems themselves – biomes, habitat, wildlife, and ecosystem processes.

The topics in the right half of the circle are human activities – alteration of ecosystems and actions taken to understand and conserve ecosystems.

By necessity, the time frames over which the ratings of status and trends are made vary – both because time frames that are meaningful for these diverse aspects of ecosystems vary and because the assessment is based on the best available information, which is over a range of time periods.

Beside each topic is a coloured circle indicating the status associated with the key finding. Within each circle is an arrow that shows both the direction and the rate of change. Beside some topics there are two circle/arrow combinations to represent a range or a dichotomy of status and trends.

The height of the stack of papers beside each key finding represents confidence in the finding, based on an evaluation of the adequacy of the supporting evidence. Confidence is lowered when the ecosystem aspect is not well understood or when data are inadequate in spatial or temporal coverage.

In the body of the report, at the beginning of each key finding section, these symbols are repeated, along with short phrases summarizing the basis for the ratings.

The red flags in some key finding sections are used to highlight aspects of the findings that may be early warning signs of significant ecological change.
KEY FINDINGS

1. **Forests**  At a national level, the extent of forests has changed little since 1990; at a regional level, loss of forest extent is significant in some places. The structure of some Canadian forests, including species composition, age classes, and size of intact patches of forest, has changed over longer time frames.

2. **Grasslands**  Native grasslands have been reduced to a fraction of their original extent. Although at a slower pace, declines continue in some areas. The health of many existing grasslands has also been compromised by a variety of stressors.

3. **Wetlands**  High loss of wetlands has occurred in southern Canada; loss and degradation continue due to a wide range of stressors. Some wetlands have been or are being restored.

4. **Lakes and rivers**  Trends over the past 40 years influencing biodiversity in lakes and rivers include seasonal changes in magnitude of stream flows, increases in river and lake temperatures, decreases in lake levels, and habitat loss and fragmentation.

5. **Coastal**  Coastal ecosystems, such as estuaries, salt marshes, and mud flats, are believed to be healthy in less-developed coastal areas, although there are exceptions. In developed areas, extent and quality of coastal ecosystems are declining as a result of habitat modification, erosion, and sea-level rise.

6. **Marine**  Observed changes in marine biodiversity over the past 50 years have been driven by a combination of physical factors and human activities, such as oceanographic and climate variability, and overexploitation. While certain marine mammals have recovered from past overharvesting, many commercial fisheries have not.

7. **Ice across biomes**  Declining extent and thickness of sea ice, warming and thawing of permafrost, accelerating loss of glacier mass, and shortening of lake-ice seasons are detected across Canada’s biomes. Impacts, apparent now in some areas and likely to spread, include effects on species and food webs.
Forests are dynamic and diverse ecosystems, where complex interactions occur between species and ecological processes, from below ground to high in the canopy. **Forests are important** to biodiversity because they provide habitat for a wide array of plant and animal species from microorganisms to large mammals and because they are a pool of genetic diversity. It is estimated that approximately two-thirds of the species in Canada are associated with forests for at least part of their life cycle. Forests also provide ecosystem services, including the regulation of water flow across the landscape, erosion control, water purification, climate stabilization, and immense economic benefits.

### Forest types

There are two forest bioclimatic zones in Canada – boreal and temperate. Each zone possesses a unique geography, vegetation, climate, soil, and wildlife. Canada has approximately 24 and 15% of the world’s boreal and temperate forests, and 9% of the world’s total forest cover. The boreal forest stretches across eight ecozones (see map). It is the largest contiguous forest ecosystem on Earth, and Canada’s largest biome, covering 25% of its total land area and 72% of its total forest area.

Spruce forests dominate all boreal forest ecozones. Black spruce forests are of particular ecological significance because of their nearly continuous ground cover of lichens, feather mosses, and sphagnum mosses. Lichens are critical forage for wintering migratory caribou herds and mosses provide habitat for a number of species. In northern Quebec, 9% of the dense black spruce forest has shifted to lichen-woodland systems over the past 50 years. The proportion of the boreal forest that is dominated by spruce has decreased in the managed forest portion of Ontario’s Boreal Shield, and in the southern part of Manitoba’s Boreal Shield. Spruce is also declining outside the boreal forest.

The temperate forest stretches across six ecozones and tree species are more variable. Dominant species include spruce and maple in the Atlantic Maritime, deciduous species in the Carolinian forest of the Mixedwood Plains, spruce and pine in the Montane Cordillera, and hemlock in the Pacific Maritime.

### Global Trends

About 130,000 km² of forest was lost each year in the last decade. This compares to 160,000 km² lost in the 1990s. From 1990 to 2005, 3.1% of the world’s forests were lost.
A study on the treeline in western Canada found only a small net increase in tree cover, but major changes in vegetation within the treeline zone. Tree cover increased in the northern half of the zone, but this was mainly offset by decreases in the southern half, especially west of the Mackenzie Delta – likely related to drier conditions due to higher temperatures. The biggest changes were an increase in shrubs and, in the northwest of the treeline zone, a replacement of lichen cover and bare land with small, non-woody plants (herbs).

Since 1900, treeline has advanced at 52% of the 166 sites examined around the world and has receded at only 1% of the sites.25
forests

Canada is one of the few countries that still have large tracts of forests, relatively undisturbed by human activity, that are believed to contain most of their native biodiversity. Just how intact Canada’s forests are depends on how they are measured and, as Long et al. point out, measuring intactness, or its corollary, fragmentation, can be complex. Global Forest Watch measured intact landscapes as undisturbed areas, free from human impact, and at least 50 km² in size for the boreal and taiga forest ecozones, and 10 km² for temperate forest ecozones. B.C. defined intact coastal rainforests as undisturbed landscapes greater than 500 km². The Alberta Biodiversity Monitoring Institute has taken a different approach, measuring intactness as a percentage of what would be expected in a pristine habitat.

Global Forest Watch has published the only national perspective on intactness (see map) concluding that almost 50% of Canada’s total land area, and more than 50% of the area of Canada’s forested ecozones, consist of intact forest landscapes. This includes 94% of the northern boreal ecozones (using the Terrestrial Ecozones of Canada classification system) – Taiga Cordillera, Boreal Cordillera, Hudson Plains, and Taiga Shield – and 73% of the Taiga Plains. The southern boreal regions are more impacted by human activities. Thirty-seven percent of the Boreal Plains remains as intact forest landscapes. About 42% of the temperate forest ecozones remains as intact forest landscapes. Ninety percent of this area is in B.C., the remainder is in Alberta.

In North America, the only remaining intact coastal temperate rainforest is in B.C. and Alaska. Approximately one-third of B.C.’s remaining coastal temperate rainforest is intact, in patches greater than 500 km².

Forest fragmentation occurs when large, continuous forests are broken up into smaller patches. It can result from human activities such as clearing for agriculture, urbanization, oil and gas exploration, and roads, as well as from natural processes such as fire and insect infestations. Natural disturbance is discussed elsewhere in this report; the discussion here focuses only on fragmentation from human activities. The impact of forest fragmentation by human activities is dependant on the species and the spatial scale. Impacts can include: declines in neotropical migrant and resident birds requiring interior forest habitat; declines in species with large area requirements, such as grizzly bear and caribou; increases in species that prefer to browse along forest edges, such as moose; increased exposure of interior forest species to predators and parasites; disruption of social structure of some species and barriers to dispersal. Sustainable forest practices can be designed to mitigate the effects of fragmentation.
Shift from late-succession to early-succession forests

Much of the Canadian landscape was dominated by old forests when European settlement began, although natural disturbance from fires and insects ensured a range of age classes was found across the forested landscape. Old forests have greater structural diversity, complexity, and biodiversity than young forests, but the characteristics of old forests depend on the species and the site history. The age at onset of old-growth characteristics varies with disturbance regimes, forest types, and site characteristics. For example, in the boreal forest, the age of old-growth stands ranges from about 80 to more than 300 years. In Nova Scotia, the government defines old-growth forests as over 125 years of age. In the B.C. interior, old-growth forests are defined as 120 to 140 years; on the coast, definitions vary from greater than 140 to greater than 250 years. A shift from old to young forests has been observed in some managed forests across the country, such as in the Atlantic Maritime, and Boreal Plains.

In the Newfoundland Boreal and Pacific Maritime ecozones, old forests still cover 40% of the forested area and it is assumed that old forests still dominate in the Hudson Plains, where human disturbance is minimal and natural disturbance regimes do not appear to have changed.
Grasslands are open ecosystems dominated by herbaceous (non-woody) vegetation. Typical temperate grasslands, like those in Canada, occur where there is low moisture, cold winters, and deep, fertile soils. Maintained historically by drought, fire, and grazing, temperate grasslands are the Earth’s most altered, and one of the most threatened ecosystems, with the highest risk of biome-wide biodiversity loss. Although other ecosystem types, such as oak savannas, alvars, and dunes support grasslands, this finding focuses on prairie and steppe.

Grasslands are important as habitat for many species, including many species at risk. They also provide soil and water conservation, nutrient recycling, pollination, habitat for livestock grazing, genetic material for crops, recreation, climate regulation, and storage for about 34% of the terrestrial global carbon stock.

Changes in extent

Losses of grasslands exceed those of other major biomes in North America. Although most grassland loss in Canada occurred prior to the 1930s, largely the result of conversion for cropland, it continues today with small remnants often suffering the most.

- **Mixed and fescue prairie** covers over 110,000 km² (25%) of the Prairie provinces. It is estimated, based on remote sensing, that 70% of original vegetation, including grasslands, was converted to other uses by the 1990s. Conversion of native grasslands continues, but at a slower rate. Overall loss from 1971 to 1986 was estimated at 3%. Losses vary among regions, for example a 10% loss was found from 1985 to 2001 in some areas.

- **Tallgrass prairie**, North America’s most threatened prairie, now covers approximately 100 km² of its former 6,000 km² in Manitoba and 820 km² in Ontario. The small patches that remain are still threatened by conversion, with 23% of remnant patches in Manitoba converted between 1987 and 2006. Only a few of the larger patches secured for conservation increased in size, due to active restoration.

- **Bunchgrass/sagebrush** in B.C. suffered losses of 15 to 19% prior to 1990. Between 1990 and 2005, an additional 1% of the original grasslands were lost. Losses in some areas were higher, for example declines in South Okanagan grassland communities from 1800 to 2005 ranged from 33 to 75%. Only small remnants of former expansive grasslands in northern B.C. remain.
Grassland health

In addition to direct loss, the remaining grasslands in Canada are under stress. Natural disturbance regimes that historically maintained grasslands have been altered; in particular, the suppression of fire and replacement of free-ranging bison with confined cattle have modified the structure and composition of native grasslands. Also, many of the richest soils have been cultivated, leaving remaining grasslands on less productive soils. Other threats to grassland health include invasive non-native species, overgrazing, forest encroachment, continued fragmentation from development, and intensification of agriculture. Overall results from two studies investigating rangeland health in Alberta and Saskatchewan in 2008 showed that 49% were healthy, 8% unhealthy, and 43% healthy with problems. In the Okanagan Valley, between 19 and 69% of rangelands were in poor condition in the 1990s. In Manitoba, 14% of remnant tallgrass prairie patches were so severely degraded by non-native species between 1987 and 2006 that patches could no longer be recognized as tallgrass prairie. Patch quality declined significantly over the time period and few are likely self-sustaining.

Global Trends

Temperate grasslands, covering 8% of the Earth, lost 70% of their native cover by 1950, with an additional 15% lost since. In North America, over 97% of tallgrass prairie, 71% of mixed prairie, and 48% of shortgrass prairie had been lost by 2003.
KEY FINDING 3. High loss of wetlands has occurred in southern Canada; loss and degradation continue due to a wide range of stressors. Some wetlands have been or are being restored.

Wetlands are land saturated with water all or most of the time, as indicated by poorly drained soils and vegetation and biological activity adapted to wet environments. They are of two types, organic (peatlands) and mineral, and are classified in five categories: bogs and fens, which are both peatlands; marshes and shallow water, which are both mineral; and swamps, which can be either. Canada has approximately 1.5 million km² of wetlands. This represents about 16% of Canada’s land mass and approximately one quarter of the world’s remaining wetlands. Thirty-seven of Canada’s wetlands, an area covering almost 131,000 km², have been designated as wetlands of international importance. This key finding discusses freshwater wetlands — estuaries, salt marshes, and other marine coastal wetlands are discussed in Coastal Biome.

Wetlands are important as one of Earth’s most productive ecosystems, supporting a disproportionately high number of species, including species at risk and significant numbers of migratory birds, fish, amphibians, a wide diversity of plants, and many other species. Wetlands provide essential services such as controlling floods, recharging groundwater and maintaining stream flows, filtering sediments and pollutants, cycling nutrients, stabilizing shorelines and reducing erosion, and sequestering carbon.

Status and trends

Despite the importance of wetlands, a comprehensive national inventory or monitoring program does not exist. The most comprehensive data are for the Prairies and southern Ontario. Most studies examining wetland loss are small, localized, old, and vary in scale. Although results find high variability of loss and degradation across the landscape and across time, evidence shows that wetland conversion was rapid from settlement through the early 1900s in many parts of southern Canada, largely as a result of conversion for agriculture. In 1991, it was estimated that the total wetland loss for Canada since the 1800s was 200,000 km².

Recent studies indicate that although there is an increase of wetlands in some areas, loss continues in many parts of Canada from land conversion, water level control, including flooding from hydroelectric development, and climate change. In addition to direct loss, wetlands continue to be degraded, fragmented, and to suffer a loss of function due to hydrological alteration, development, pollution, invasive species, recreation, grazing, management of adjacent land, and climate change.

Wetlands near large urban centres are particularly at risk and have suffered severe losses. It has been estimated that less than 0.2% of Canada’s wetlands fall within 40 km of urban centres, and that 80 to 98% of wetlands in or adjacent to major urban centres have been lost.
Global Trends

Wetlands currently cover between 5 to 10% of the Earth’s land area. It is estimated that more than half of the world’s original wetlands have disappeared, and they are being lost and degraded more quickly than any other ecosystem type.

Wetlands currently cover between 5 to 10% of the Earth’s land area. It is estimated that more than half of the world’s original wetlands have disappeared, and they are being lost and degraded more quickly than any other ecosystem type.

The millions of small wetlands of the Canadian and U.S. prairies are the most productive waterfowl habitat in the world, supporting 50 to 88% of the North American breeding populations of several species. Availability and condition of wetlands are primary factors determining the number and diversity of these waterfowl. Although these factors are influenced greatly by climate variation, land use change is also important.

As land was settled and converted to agriculture, extensive areas of wetlands were drained. No comprehensive data on historical loss exist, however analysis of localized studies in the Canadian Prairies shows high variability with loss estimates between settlement and the 1990s of 40 to 71%. Despite conservation efforts over the past several decades, wetland loss and degradation continue, largely as a result of intensification of agriculture. Between 1985 and 2001, 6% of wetland basins were lost, representing 5% of the total estimated wetland area. In addition, estimates of wetland area suffering a loss of function due to factors such as partial drainage were about 6% annually. An analysis of agricultural impact and recovery of wetlands between 1985 and 2005 found the edges of wetlands were impacted more than wetland basins. Although the rate of impact for edges declined over the period, the rate of recovery was slower, indicating an increasing overall impact. The percent of edges impacted ranged between 82 and 97% in 1985, depending upon location, and stabilized in the early 1990s at between 90 and 95%.

Up to 90% of prairie wetlands are estimated to be smaller than 1 ha. Research indicates that, overall, smaller wetlands support a greater number of waterfowl than larger ones. These small wetlands are also suffering the greatest losses. From 1985 to 2001, the average size of wetland basins lost was 0.2 ha, with 77% smaller than 2.6 ha. Between 1985 and 2005, shallow seasonal wetlands in agricultural fields had the highest rate of impact and slowest recovery rates relative to other wetland types.
Prior to European settlement, southern Ontario had approximately 20,266 km² of wetlands. By 2002, 72% had been converted to other uses. This represents a decrease in the proportion of wetland cover on the landscape from 25 to 7%. Historically, the highest concentrations of wetlands were found in southwestern and eastern Ontario. These areas are also where the most severe losses have occurred. For example, prior to settlement, 83% of Essex County, at the tip of southwestern Ontario, was wetland but by 2002 this was reduced to less than 2%. From 1967 to 1982, conversion of wetlands for agriculture accounted for 85% of the losses. Urban development and associated transportation infrastructure were significant factors in the areas surrounding southeastern Lake Ontario.

Most wetland conversion happened in the 19th and early 20th centuries (68% of wetlands were converted prior to 1967). Nevertheless, despite wetland gains in some areas, overall net loss continues. While the estimated extent of wetlands larger than 10 ha remained relatively stable between 1967 and 1982, from 1982 to 2002 an additional 3.5% of pre-settlement wetlands were lost – an average of 3.5 km² per year. These estimates are conservative since Great Lakes coastal wetlands and wetlands smaller than 10 ha were not included in the analyses.

Covering over 700 km², wetlands along the shores of the Great Lakes, their connecting channels, and tributaries provide critical habitat for wildlife, including birds, mammals, fish, amphibians, reptiles, and a diversity of plants. They have suffered extensive loss and degradation over the past 200 years and many have been greatly affected by pollution. It is estimated that, by 1984, 35% of wetlands along the Canadian shores of lakes Erie, Ontario, and St. Clair had been lost with greatest losses, 73 to 100% by 1979, occurring between Toronto and the Niagara River. Most conversion occurred from the late 19th to early 20th centuries when large wetlands were dredged for shipping and filled for industrial and urban development. Loss and degradation continue due to shoreline alteration, water level control, nutrient and sediment loading, invasive non-native species, dredging, and industrial, agricultural, and residential development. Upstream land practices also have an impact, particularly through run-off from agricultural lands and impervious surfaces.

Recent surveys show that the health of wetlands is variable across the basin. Water Quality Index scores, one method of monitoring wetland health, indicate that for Canada, the lower Great Lakes, especially the western end of lakes Ontario and Erie, which are most heavily impacted by urbanization and agriculture, suffer the most degradation. Comparatively few sites in Canada in Georgian Bay, Lake Huron, and Lake Superior are degraded.

### GREAT LAKES WATER QUALITY INDEX SCORES IN CANADA

**Lakes Ontario and Erie and Georgian Bay, sampled 2006 to 2009**

**Lakes Superior and Huron, sampled 1998 to 2005**

Over 60 km² of riparian habitat along the St. Lawrence River was modified from 1945 to 1984. Most changes occurred prior to the mid-1970s and were a result of draining and filling of open waters and wetlands for housing, roads, and agriculture. Losses near major urban centres were the greatest, for example, 83% of Montreal's wetlands were lost by 1976. Construction of water control structures, including dams and the St. Lawrence Seaway (1954-1958), was also responsible for change in the late 1950s, while urbanization was more important after that time.

Since the 1970s, the overall extent of wetlands has increased, although there is variability depending upon the type and location of the wetland. While wetland loss continues due to urbanization, particularly in the Montreal and Lac Saint-Pierre areas, restoration efforts and reduced water levels have resulted in a 2.7% net gain of marshes and swamps between 1990 and 2002. Gains were mainly in the fluvial, upper, and lower estuaries and occurred mainly at the expense of open water. Declining water levels in the 1990s may have accelerated the drying trend in some areas, transforming low marshes to high marshes and swamps that are dominated by invasive plant species. Water levels are influenced by a number of factors, including water control structures, flow from the Great Lakes and the Ottawa River, and climate change, particularly in the estuary and Gulf of St. Lawrence.

Exotic wetland plants now comprise 14% of vascular plants in St. Lawrence River wetlands. Their expansion can be attributed to shoreline alteration, excavation of the navigation channel, and water level regulation, which have reduced the magnitude of floods, decreased circulation in shallow littoral areas, and reduced the efficiency of the river to flush nutrients from sediments and to uproot robust emergent vegetation.
OLD CROW FLATS

Designated as a wetland of international importance, Old Crow Flats is a large, undeveloped complex (over 6,000 km²) of more than 2,000 lakes and wetlands formed by thawed permafrost. It provides continentally significant habitat for up to half a million breeding and moulting waterbirds. The overall surface area of water decreased by 13 km² (3.5%) from 1951 to 2001, with greatest overall decreases found in large and very large lakes. Ponds increased in extent by 7% from 1951 to 1972, and decreased by 8.5% between 1972 and 2001. Changes are attributed to a mix of interacting processes with some lakes forming or expanding, and some suddenly draining due to collapse of permafrost – along with an overall drying trend due to increased evaporation from hotter summers in recent years.

Source: adapted from Labrecque et al., 2009

PEACE-ATHABASCA DELTA

The Peace-Athabasca Delta, covering over 5,000 km², is one of the largest inland freshwater deltas in the world. Made up of two large central lakes and over 1,000 small lakes and wetlands, it is of international importance for waterbirds, bison, and fish. The delta’s dynamics are driven largely by short- and long-term fluctuations in water levels, including occasional spring floods caused by ice jams and summer open-water floods, with intervals of drying between flood events. Studies have found recent ice-jam and flood frequency to be within the range of historical variability and intervals. Nevertheless, although the delta has experienced several major ice-jam and open-water flooding episodes since the 1940s, the most recent occurring in 1997, landscape analyses have found a significant overall drying trend from 1945 to 2001 in which wet communities declined in extent while dry communities increased.

Determining the cause of landscape change is difficult because the delta is constantly changing – driven by climate, hydrology, and deltaic processes, all of which are variable and influenced by natural and anthropogenic factors. Influences over the past 45 years include:

- a warmer, drier climate;
- the prevention of a natural change in the course of the Athabasca River in 1972 and the natural occurrence of a channel breakthrough in 1982;
- flow regulation, including the construction of the Bennett Dam on the Peace River in 1968, and subsequent weirs on outflow channels built in 1975-76 in response to concerns about changes in connected lake levels;
- land use changes and development, including forestry, agriculture, and oil sands extraction;
- growing water uses; and
- cultural changes.

A projected reduction in ice-jam flood frequency over the next century due to climate change may result in further drying, and additional upstream development may add additional stress to the delta’s ecosystem.
STATUS OF PEATLANDS

Canada has about 1.1 million km² of peatlands, which represents about 12% of its land area and the majority of its total wetland area. Ninety-seven percent occur in the boreal and subarctic regions. In addition to their significance to biodiversity, Canadian peatlands, which are wetlands that have accumulated more than 40 cm of organic soil, are important globally as carbon stores. Although it is estimated that 90% of Canada’s peatlands remain intact in terms of total area, comprehensive data do not exist. Some example estimates of peatland loss through direct human activity include:

- 9,000 km² flooded for hydroelectric development throughout Canada between 1960 and 2000;
- 250 km² drained for forestry in the Boreal Shield between 1980 and 2000;
- 240 km² drained for horticultural peat across Canada by 2007, including a 56% increase in area under active extraction from 1990 to 2007;
- 237 km² disturbed by oil sands mining in Alberta by mid-2009;
- 110 km² converted to agriculture in Quebec prior to 2001.

Approximately 60% of the peatlands in Canada, particularly those in Hudson/James Bay lowlands, Mackenzie River Basin, and parts of northern Alberta and Manitoba, lie within areas expected to be severely affected by climate change. Climate change is already affecting northern peatlands through permafrost thaw and other changes in hydrology. These impacts show rapid changes with lake expansion in some areas, shrinkage or disappearance in others, including the replacement of forests in some areas by wet sedge meadows, bogs, and ponds and lakes (see Ice Across Biomes). Climate change may also result in changes to the carbon balance of Canada’s extensive peatlands.
LAKES AND RIVERS

KEY FINDING 4. Trends over the past 40 years influencing biodiversity in lakes and rivers include seasonal changes in magnitude of stream flows, increases in river and lake temperatures, decreases in lake levels, and habitat loss and fragmentation.

Over 8,500 rivers and 2 million lakes cover almost 9% of Canada’s total area. The hydrology of these rivers and lakes influences the structure of aquatic habitats and the composition of ecological communities, including plankton, plants, benthic macroinvertebrates, and vertebrates such as fish, amphibians, reptiles, and birds. In North America, species living in aquatic ecosystems have a higher risk of extinction than species living in other ecosystems.

Status and trends of seasonal flows

Most rivers in Canada show pronounced seasonal variation in flows. Minimum annual flow occurs in late summer when precipitation is low and evaporation is high, and in late winter when precipitation is frozen in ice and snow. Minimum flows can limit the availability of specific aquatic habitats and also influence water temperatures and dissolved oxygen levels. For example, a decrease in minimum flow can affect the quantity and temperature of water for late-spawning fish and increase thermal stress and exposure to predation for all fish.

In a study of 172 sites in naturally flowing rivers, the lowest annual flow significantly increased between 1970 to 2005 at 13% of the sites. These sites were generally in the northern Montane Cordillera, Boreal Cordillera, Taiga Plains, Taiga Shield, and Arctic ecozones. Twenty-six percent of the sites had significant decreases in minimum flow, generally in the southern Pacific Maritime, southern Montane Cordillera, Boreal Shield, Mixedwood Plains, Atlantic Maritime, and Newfoundland Boreal ecozones. Sixteen percent of the sites, mostly in eastern Canada, Great Lakes, and the North, had later minimum flows, while 8%, mostly in the South and along the western coast, had earlier minimum flows.

Source: Monk et al., 2010

TRENDS IN MINIMUM RIVER FLOW IN NATURAL RIVERS

1970 to 2005

Source: Monk et al., 2010
Maximum annual flow, or spring freshet, generally occurs in late spring and in early summer and is driven by snow melt and seasonal rainstorms. A change in maximum flow can affect species with life cycles synchronized to the spring freshet and the rich foods provided by flood plains.

Seventeen percent of the sites showed a significant decrease in maximum flow. These sites were distributed across almost all ecozones. About 6% showed a significant increase in maximum flow, mostly in the Atlantic Maritime Ecozone. Maximum flow occurred significantly earlier at about 11% of the sites and significantly later at about 6% of the sites.

The average flow of prairie rivers has been declining over the past 50 to 100 years, including:

- 20% reduction from 1958 to 2003 – 33% since 1970 – for the Athabasca River at Fort McMurray, Alberta;
- 42% reduction from 1915 to 2003 for the Peace River, near the town of Peace River, Alberta;
- 57% reduction from 1912 to 2003 for the Oldman River at Lethbridge, Alberta;
- 84% reduction from 1912 to 2003 for the South Saskatchewan River at Saskatoon, Saskatchewan.

Reduced flows like these can impact biodiversity in many ways, including reducing habitat availability, not meeting the minimum flow requirements for aquatic species, and increasing summer temperatures.
In the Prairies, a combination of glaciation and dry climate has resulted in numerous closed-basin saline lakes, that drain internally, rarely spilling runoff. These lakes are sensitive to climate, with water levels and salinity driven by precipitation on the lake, local runoff to the lake, and evaporation off the lake. Aquatic communities within these closed-basin lakes are sensitive to chemical changes that can be a result of changes in water levels. For example, water levels affect salinity and the diversity of aquatic species declines as salinity increases. When salinities reach extremely high values, species diversity becomes very low.

From 1910 to 2006, water levels in 16 representative closed-basin lakes showed an overall pattern of decline by 4 to 10 metres. Declines can be explained in part by climate, including increases in spring temperatures, for example from 1950 to 2007, potentially resulting in increased evaporation rates and declining stream runoff to the lakes. However, climate variables alone cannot explain the declines, for example no significant change was evident in precipitation or in an index of drought severity, from 1950 to 2007. Other contributing factors that reduce surface runoff to the lakes include land use changes, such as dams, ditches, wetland drainage, and dugouts, and changes in agricultural use and practices, such as the decline in summer fallow, increase in conservation till, and continuous cropping.
Global Trends

More than 99% of the world’s freshwater is frozen in glaciers, permafrost or permanent snow, or locked in underground aquifers. The remaining accessible freshwater is not distributed evenly, with 40% of the world’s population projected to live in water-scarce regions by 2020.

Diverse and varied plant communities inhabiting Great Lakes wetlands are dependent on the high seasonal and year-to-year variability in water levels found naturally, in, for example lakes Huron and Michigan, which are unregulated. Natural water levels are affected by precipitation, evaporation from the lake surface, inflow from upstream, and outflow to the downstream lakes. Water levels are also affected by direct regulation as well as dredging, control structures, dams, canals, and diversions. The regulation of water levels in Lake Superior since 1914 and in Lake Ontario since about 1960 has reduced the variability of water levels. In Lake Ontario, this has adversely affected coastal wetland ecosystems, reduced plant species diversity, and altered habitat values for many animals that depend wholly or partly on wetlands to thrive. As water shortages become more common in the southern U.S., there may be pressure for water diversions from the Great Lakes, which could, if allowed, result in further impacts on biodiversity.
KEY FINDING 5. Coastal ecosystems, such as estuaries, salt marshes, and mud flats, are believed to be healthy in less-developed coastal areas, although there are exceptions. In developed areas, extent and quality of coastal ecosystems are declining as a result of habitat modification, erosion, and sea-level rise.

Coastal ecosystems occur at the interface between land and sea. They include intertidal zones, estuaries, salt marshes, mud flats, seagrass meadows, beaches, cliffs, banks, and dunes. Bounded by three oceans, Canada has the longest marine coastline in the world, with 29% of the world’s total coastline. Coastal ecosystems are important as they are particularly productive environments. Canadian coastal ecosystems support a diversity of marine and terrestrial species, including members of all major groups of marine organisms, approximately 1,100 species of fish, and numerous marine mammals, birds, plants, and invertebrates.

Developed coastlines In Canada, as elsewhere in the world, increasing human population and development of coastal regions is resulting in ongoing loss and degradation of coastal ecosystems. Infrastructure, industry, commercial activity, and settlements near the coast have depleted and altered natural systems and made coastlines more sensitive to erosion. Wetlands, including salt marshes and estuarine habitat, were severely depleted during early development of the populated areas of Canada’s east and west coasts. Further losses will occur as sea levels rise, especially where development now leaves only a narrow margin of habitat. Inventories are available of extent and sensitivity of some coastal ecosystems, but information on past and current rates of loss and alteration is sparse.

Less developed coastlines Sea-level rise and changes in sea ice are examples of emerging stressors that are altering ecosystems in coastal areas that are not greatly affected by development. For example, along the southwestern, western, and eastern coasts of Newfoundland, the combination of rising sea level and changing offshore winter ice conditions, along with increased human use of the coast for residences and tourism, has resulted in widespread acceleration of erosion and degradation of dunes and coastline. In Quebec, from the upper estuary to the Gulf of St. Lawrence, rates of coastal erosion measured from 1990 to 2004 were higher than those measured before 1990. This was likely influenced by changes in climate-related processes such as ice scouring and wave action. Erosion in sensitive areas of the Beaufort Sea coastline may also increase because of reduction in sea ice, melting ground ice, and increase in storms as is currently happening along the coast of the Alaskan Beaufort Sea.

Global Trends

About 20% of the world’s land area is coastal. An estimated 19% of land within 100 km of the coast (excluding Antarctica) has been converted for agriculture and urbanization. Important coastal habitats, including mangroves, wetlands, seagrasses, and coral reefs, are disappearing rapidly. It is estimated that up to 65% of Atlantic coastal marshes have been lost since the 1700s as a result of dyking and drainage for agriculture and settlement, and more recently for industrial and recreational development as well.
Coastal wetlands and beach and dune habitats declined at five sites in southeastern New Brunswick between 1944 and 2001. Total losses at each site ranged from 7 to 18 ha for beaches and dunes, and from 30 to 55 ha for wetlands. Erosion, removal of sand for aggregate production, and increased hardening of the foreshore for development have contributed to these losses. Beaches and dunes provide important habitat for species such as the endangered Atlantic population of piping plovers, which decreased by 17% from 1991 to 2006, partly due to habitat loss and degradation from accelerating coastal development.

Coastal development, including converting natural ecosystems to built-up areas, often increases sensitivity to erosion, impairs coastal water quality, and alters wildlife habitat. In Nova Scotia, although increased urbanization has led to population declines in many rural areas, human population along the coast has increased. In the more densely populated areas of Newfoundland, where human activity has been modifying the shoreline for more than 100 years, many types of activities contribute to increasing rates of erosion. For example, compaction of beach sediment by all-terrain vehicles leads to incoming waves washing further landward, increasing erosion above the mean high-tide line.

Sea-level rise and associated storm impacts are likely to increase erosion along the Atlantic coast. Water level relative to land in six Atlantic harbours is currently rising at rates from 22 to 32 cm per century, over half of which is due to land subsidence. (The land in this region is still affected by changing ice and water loads following glacier retreat.) The remainder of the increase, about 12 cm per century at Charlottetown, is a signal of global and regional sea-level rise. This rate is anticipated to increase due to climate change. Canada’s Atlantic coast is particularly sensitive to ecological damage from sea-level rise because there are many low-lying areas with salt marshes, barrier beaches, and lagoons. Impacts from sea-level rise are compounded by the effects of storm surges, which are increasing in number and intensity because of increases in tropical storms.
The salt marshes of the Hudson Plains are an exception to the general finding that coastal habitats in less-developed areas are healthy. These coastal marshes are under stress from the increasing population of mid-continent lesser snow geese. The goose population increase is mainly due to human influences outside of the region, including increased supply of agricultural food on wintering grounds in the United States and along migration routes, along with declining harvest and the development of refuges.33, 34

Intensive foraging by snow geese has led to vegetation loss, shifts in plant community composition, and exposure and sometimes erosion of sediment.32, 34, 35 This results in large areas of exposed sediment that are resistant to re-colonization because few plants can germinate or establish themselves in the saline sediments. Approximately one third of the coastal salt marsh vegetation in the Hudson Plains Ecozone+ has been destroyed by geese and a far greater area will be severely damaged if this intense foraging pressure continues.36

Loss of intertidal wetlands to urban, agricultural, and industrial development was greatest at the turn of the 20th century, but continues today due to the pressures of human population growth.38, 39 About 76% of B.C.’s population lives in coastal communities, mainly in the Lower Mainland and southeastern Vancouver Island.40 The population of coastal B.C. is projected to increase by almost one million people by 2025.5

Total loss of intertidal wetlands, mainly through dyking for agriculture in the early part of the 20th century, is estimated at 70% for the Fraser River estuary and 32% for major estuaries along the east coast of Vancouver Island.39

There are over 440 estuaries in the Pacific Maritime Ecozone+, most with fairly small intertidal zones of 1 to 10 ha.41 The largest estuary is that of the Fraser River, with about 21,000 ha of intertidal wetlands remaining. Although estuaries occupy less than 3% of the coast, an estimated 80% of coastal wildlife, including birds, fish, mammals, and invertebrates, use estuarine habitat at some point in their life cycle.5 Estuaries are also important to surrounding land and water ecosystems because of their role in water filtration and nutrient cycling.41

Boundary Bay is part of the Fraser River estuary. The extensive (5,000 ha)42 mud flats support the largest known migrant populations of western sandpipers and the largest Canadian winter populations of dunlins, black-bellied plovers, and great blue herons.43
Eelgrass meadows: 
A coastal ecosystem at risk

Eelgrass meadows are among the most productive ecosystems in the world, and among the most threatened. They are declining globally, with mixed and often uncertain status along Canadian coasts. Seagrass meadows, which include eelgrass, have declined at an average rate of 7% per year around the world since 1990, an acceleration from an annual decline of less than 1% prior to 1940. Declines are most often associated with stressors, such as eutrophication and increased turbidity of coastal waters, mainly related to the growth of coastal human populations. The global analysis on which these rates of decline are based does not include Canada due to lack of adequate trend data.

Major regional declines have occurred in the past. In the early 1930s, thousands of hectares of eelgrass disappeared in eastern North America, attributed to eelgrass wasting disease, although climatic conditions may also have played a role.

Eelgrass, a flowering marine plant that forms extensive subtidal beds in sand and mud along coastlines, traps particulate matter and plankton and provides habitat for invertebrates, fish, and marine mammals. Eelgrass is an important food for migrating and wintering waterfowl, and provides foraging areas for other birds.

Pacific

On the Pacific coast, where eelgrass beds are spawning grounds for herring and rearing habitat for salmon, some declines may be due to the Pacific oyster, which was introduced for oyster farming and has spread into the wild. Oysters alter habitat physically and may also cause sulphide to accumulate in sediments – the net result is that eelgrass is typically absent seaward of oyster beds. Other declines are related to development of coastal areas, for example for log storage and harbours. A non-native dwarf species of eelgrass that thrives higher up in the intertidal zone than does native eelgrass has taken hold in some areas of southern B.C., with mixed ecological consequences. Colonization of mudflats by dwarf eelgrass meadows on Roberts Bank in the Fraser river estuary has displaced migratory shorebirds that graze on the thin film of organic matter covering the mud.

James Bay

Eelgrass beds along the east coast of James Bay were among the most extensive in North America, covering 250 km² prior to their rapid decline around 1998. Since the decline, eelgrass has shown signs of recovery, but neither the cause of the decline nor the present status are well understood. Alternative explanations for the decline in James Bay have been put forward, such as:

- an outbreak of eelgrass wasting disease triggered by a year with unusually high summer and winter temperatures, along with changes to habitat from coastal uplift and climate change;
- impaired growth and survival due to reduced salinity of water in James Bay resulting from larger and more frequent discharges of fresh water via the La Grande River, due to diversions.

Atlantic Coast and Gulf of St. Lawrence

Compiling results from a number of mainly short-term studies provides a picture of a general decline in eelgrass and some abrupt die-offs, along with some areas with stable to increasing trends. One factor in declines on the Atlantic coast is the spread of the invasive green crab, which can uproot eelgrass plants. Some study results:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>YEARS</th>
<th>EELGRASS TRENDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobster Bay, N.S.</td>
<td>1978 to 2000</td>
<td>estimated losses of 30% and 44% in two areas</td>
</tr>
<tr>
<td>4 Nova Scotia inlets</td>
<td>1992 to 2002</td>
<td>loss of 80% of total intertidal area occupied by eelgrass</td>
</tr>
<tr>
<td>13 southern Gulf of St. Lawrence estuaries</td>
<td>2001 to 2002</td>
<td>biomass decline of 40%</td>
</tr>
<tr>
<td>Antigoni Harbour, N.S.</td>
<td>2000 to 2001</td>
<td>biomass decline of 95% followed by 50% decline in geese and ducks that feed on the eelgrass</td>
</tr>
<tr>
<td>Newfoundland</td>
<td>past decade</td>
<td>increase in abundance, based on local knowledge, possibly due to milder temperatures and changes in sea ice</td>
</tr>
<tr>
<td>Gulf of St. Lawrence in Quebec</td>
<td>various</td>
<td>Manicouagan Peninsula distribution expanded (1986 to 2004); generally also expanding or stable in other areas</td>
</tr>
</tbody>
</table>
KEY FINDING 6. Observed changes in marine biodiversity over the past 50 years have been driven by a combination of physical factors and human activities, such as oceanographic and climate variability, and overexploitation. While certain marine mammals have recovered from past overharvesting, many commercial fisheries have not.

The global marine ecosystem covers over 70% of the Earth’s surface. It is a complex system, in constant motion, moving not only nutrients, dissolved oxygen, carbon, and water masses, but also bacteria, algae, plants, and animals, among regions. The millions of species estimated to live in the ocean dwell in a wide range of habitats, including the open ocean, sea floor, sea ice ridges, hydrothermal vents, cold seeps, coral and sponge communities, seamounts, ocean trenches, and continental shelves.1

Marine biodiversity is the foundation of the countless ecosystem services provided by the oceans. Marine plankton plays a major role in the global carbon cycle, and harvest of marine species provides an estimated $21 trillion per year in socioeconomic benefits to the world.2 Marine biodiversity is essential for the functioning of marine ecosystems, their ability to persist under stress, their ability to recover from disturbances, and their ability to provide benefits to people.3 With jurisdiction over 6.5 million km² of marine waters in three oceans,4 Canada reaps immense benefits from the ocean.

Changes in the physical environment of marine ecosystems

Sea temperature, salinity, wind patterns, and ocean circulation have significant impacts on marine biodiversity. For example, zooplankton community composition and several fish trends are correlated with large-scale climate signals in the Pacific Ocean, including the El Niño Southern Oscillation and the Pacific Decadal Oscillation.5 Mean sea surface temperature has increased5

- from 1978 to 2006 in the North Coast and Hecate Strait and West Coast Vancouver Island, following a period of colder surface water in the previous 25 years, although 2007 and 2008 were cooler than average;6
- since the 1970s in the Beaufort Sea;
- since the late 1970s in the Canadian Arctic Archipelago and in the Hudson Bay, James Bay, and Foxe Basin;
- since the early 1990s in the Newfoundland and Labrador Shelves;
- since the 1980s in the Estuary and Gulf of St. Lawrence.

The ocean has become fresher (less saline)5 in several ecozones+:
- since 1978 in the North Coast and Hecate Strait, following a 30-year period of high salinity;
- since the 1970s in the Beaufort Sea, as a result of melting sea ice, input from the Pacific Ocean, and surface water from the Arctic Ocean.
Critically low oxygen concentrations have been observed at some sampling points in the Estuary and Gulf of St. Lawrence and the three ecozones in the Pacific. In the St. Lawrence Estuary, low oxygen conditions have been observed since 1984.5 Declines in oxygen concentration are caused by a number of factors, including changes in ocean circulation patterns, freshwater inputs, rising temperatures, and increases in organic matter on the sea floor. The latter may be caused by increases in primary production on the surface and by human activities.11 Observed effects of low oxygen content on biodiversity in Canadian waters include declines and mortality of bottom-dwelling animals and altered food webs.5 Some impacts observed globally include fish and crab kills,12 more prevalent jellyfish blooms,13 changes in marine biochemical pathways that favour some species over others,11 creation of dispersal barriers for larval fish and crustaceans that are less tolerant of low oxygen than adults,11 and altered food webs.11

**OCEAN ACIDIFICATION**

When carbon dioxide dissolves in the ocean, it lowers the pH, making the ocean more acidic.8 Since pre-industrial times, the oceans have become more acidic by a pH of approximately 0.1. This seems like a small amount — but the biological effects of small changes in ocean acidity can be severe. For example, a pH change of 0.45 from pre-industrial times, which is predicted by the end of this century, could have dire consequences for marine organisms that build a calcium carbonate skeleton or shell, such as corals, molluscs (oysters, mussels, scallops), crustaceans (crabs, shrimp), echinoderms (starfish), and many species of plankton.9 Impacts are expected to occur first in the polar regions.10 Ocean acidification is already occurring in four marine ecozones+: West Coast Vancouver Island, Beaufort Sea, Estuary and Gulf of St. Lawrence, and Gulf of Maine and Scotian Shelf. It is predicted to occur in all oceans and to have severe consequences for biodiversity as early as the end of this century.5

**Dissolved Oxygen in the St. Lawrence Estuary**

<table>
<thead>
<tr>
<th>Percentage, 1930 to 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>45%</td>
</tr>
<tr>
<td>35%</td>
</tr>
<tr>
<td>25%</td>
</tr>
<tr>
<td>15%</td>
</tr>
</tbody>
</table>

Source: adapted from Dufour et al., 201014

**Global Trends**

Low-oxygen zones where ocean species cannot live have increased globally by close to 5.2 million km² since the 1960s.11
Marine food webs

Plankton are passively drifting plants and animals that move on ocean currents. Some species can reach very high densities (up to 20 million cells per litre), over very large areas (thousands of square kilometres), and their “blooms” can be captured by satellite. Planktonic plants, bacteria, and algae (phytoplankton) are the foundation of the marine food web. Planktonic animals (zooplankton) provide a key link between the phytoplankton, that they eat, and the fish, seabirds, and other marine species that eat them.2

Global Trends

Over the past 50 years there has been a decline in size, a change in species composition, and earlier onset of phytoplankton blooms worldwide.2

The timing and duration of the peak zooplankton bloom has changed over the past 40 years in all Pacific and Atlantic marine ecozones+. For example, the peak abundance of Neocalanus, the dominant zooplankton species in the Strait of Georgia, occurs approximately 50 days early in the 2000s compared to the 1960s to 1970s. This has created a mismatch in timing between small fish and their zooplankton prey. Juvenile salmon that enter the Strait early in the season, such as chum, pink, and sockeye, have benefitted, while species that arrive later in the season, such as chinook and coho, have declined.15 Neocalanus has also declined sharply since 2001 and the decline in abundance may be accelerating and affecting species that depend on it for food.15

Spring phytoplankton blooms start earlier, are more intense, and last longer on the Scotian Shelf than they did in the 1960s and 1970s.16

Several zooplankton species that are considered to have a key role in the marine food web are declining. Euphausiids, or krill, in the western North Atlantic and Scotian Shelf, feed on phytoplankton in their youngest stages and are preyped upon by juvenile groundfish, pelagic fish, and baleen whales. Their abundance has declined between the 1960s to 1970s and the 1990s to 2008.18
In the Newfoundland and Labrador Shelves Ecozone, in the 1990s, a decrease in groundfish abundance was accompanied by a dramatic increase in invertebrates such as shrimp and crab. A combination of several factors has potentially led to these changes in the marine food web, including overfishing of groundfish, change in water temperatures, and decreased predation on the invertebrates. In response, the commercial fishery has shifted from groundfish to species lower on the food web, such as shrimp, snow crabs, and, more recently, sea cucumber, whelk, and hagfish. The shift from a higher to a lower trophic level fishery is a worldwide phenomenon often referred to as “fishing down the food chain”.

An equivalent shift in ecosystem structure occurred in the Gulf of Maine and Scotian Shelf, and the Estuary and Gulf of St. Lawrence ecozones between 1985 and 1990. The shift is reflected in decreases in groundfish and zooplankton and concurrent increases in seals, small pelagic fish, and invertebrates. A moratorium on the commercial groundfish fishery was implemented in the Gulf of Maine and Scotian Shelf in 1993, with only limited recovery of some groundfish species.

In Hudson Bay and James Bay, the small Arctic cod is recognized as a keystone species that plays a central role in food web dynamics. Arctic cod is important in the diet of seabirds and marine mammals such as ringed seals and belugas, although it does not appear to be the sole food of any one species. Arctic cod can be extremely abundant – densities of 11 kg cod per square metre were recorded in ice-covered Franklin Bay in the Beaufort Sea.

The major food of thick-billed murre nestlings at Coats and Digges islands shifted from Arctic cod to capelin in the mid-1990s. The shift reflects a change in the relative abundance of Arctic cod and capelin. As the extent and duration of sea ice declines, the abundance of Arctic cod, which is a sea-ice associated species, is declining, while capelin, which prefers warmer waters, is increasing. In contrast to Hudson Bay, capelin is decreasing as a proportion of the diet for murres in the Newfoundland and Labrador Shelves, where capelin abundance and size has declined.

Note: Measures are: catch per unit effort (CPUE) for shrimp, millions tonnes for cod and redfish, kilograms per tow for skate and snow crab.
Source: adapted from Fisheries and Oceans Canada (DFO), 2010

In Hudson Bay and James Bay, the small Arctic cod is recognized as a keystone species that plays a central role in food web dynamics. Arctic cod is important in the diet of seabirds and marine mammals such as ringed seals and belugas, although it does not appear to be the sole food of any one species. Arctic cod can be extremely abundant – densities of 11 kg cod per square metre were recorded in ice-covered Franklin Bay in the Beaufort Sea.

The major food of thick-billed murre nestlings at Coats and Digges islands shifted from Arctic cod to capelin in the mid-1990s. The shift reflects a change in the relative abundance of Arctic cod and capelin. As the extent and duration of sea ice declines, the abundance of Arctic cod, which is a sea-ice associated species, is declining, while capelin, which prefers warmer waters, is increasing. In contrast to Hudson Bay, capelin is decreasing as a proportion of the diet for murres in the Newfoundland and Labrador Shelves, where capelin abundance and size has declined.

In the Newfoundland and Labrador Shelves Ecozone, in the 1990s, a decrease in groundfish abundance was accompanied by a dramatic increase in invertebrates such as shrimp and crab. A combination of several factors has potentially led to these changes in the marine food web, including overfishing of groundfish, change in water temperatures, and decreased predation on the invertebrates. In response, the commercial fishery has shifted from groundfish to species lower on the food web, such as shrimp, snow crabs, and, more recently, sea cucumber, whelk, and hagfish. The shift from a higher to a lower trophic level fishery is a worldwide phenomenon often referred to as “fishing down the food chain”.

An equivalent shift in ecosystem structure occurred in the Gulf of Maine and Scotian Shelf, and the Estuary and Gulf of St. Lawrence ecozones between 1985 and 1990. The shift is reflected in decreases in groundfish and zooplankton and concurrent increases in seals, small pelagic fish, and invertebrates. A moratorium on the commercial groundfish fishery was implemented in the Gulf of Maine and Scotian Shelf in 1993, with only limited recovery of some groundfish species.
Marine mammals

Marine mammals may play a role in structuring marine ecosystems as top predators (for example, killer whales, belugas), fish-eaters (for example, sea lions, seals), or bottom feeders (for example, sea otters, bowhead whales, gray whales). However, the effects of marine mammals on the functioning of marine ecosystems are poorly understood. Some marine mammals, such as sea otters, are known to be keystone species because their removal results in a significant ecosystem shift. Sea otters feed on sea urchins, which, in the absence of predation by sea otters, overgraze kelp.

Several marine mammal populations are recovering from past overharvesting including grey seals in the Scotian Shelf and Gulf of St. Lawrence,23 harp seals in the Gulf of Maine and Scotian Shelf,24 western Arctic bowhead whales in the Beaufort Sea,25 the B.C./Alaska sea lions,26 sea otters,5 and the Pacific harbour seal.27 Resident killer whale populations off the coasts of Vancouver Island have also recovered from previous commercial overexploitation but have begun to decline in recent years, possibly related to declines in chinook salmon, an important food source.28

Source: adapted from Fisheries and Oceans Canada (DFO), 2010.5 Primary references noted in the text.
Marine fisheries

Declines in several fish stocks have occurred in the Atlantic and Pacific oceans as well as in the Hudson Bay, James Bay, and Foxe Basin, as a result of overexploitation in combination with other stressors, such as increased temperature, decreased salinity, and increased acidity. Declining stocks include groundfish, such as Atlantic and Pacific cod, lingcod and rockfish, pelagic fish such as herring and capelin, and anadromous fish such as coho, chinook salmon, Atlantic salmon, and Arctic char. Management measures designed to reverse long-term fisheries declines have been largely unsuccessful. Depending on the fishery, rebounds have been hampered by large-scale oceanographic regime shifts, loss of spawning and rearing habitat, and contaminants.

Not all fisheries are in decline. For example, turbot, sablefish, and Pacific sardine are all increasing in the West Coast Vancouver Island Ecozone and pink and chum salmon are increasing in the Strait of Georgia.

**Global Trends**

Over 30% of fish stocks are over-exploited, fully exploited, or depleted.
The average of sea-ice extent for September (the month with the least ice cover) has declined over the Northern Hemisphere by 11.5% per decade since satellite measurements began in 1979.4, 5 Average ice extent declined for all seasons over this period.5 Ice is melting earlier in the year,6 and its age and distribution are changing.7, 8

Multi-year ice is being lost, meaning that a greater proportion of ice is younger, thinner, and more subject to rapid break-up.7, 8

These changes in sea ice vary regionally. In the Canadian Arctic Archipelago, September ice extent declined by 9% per decade from 1979 to 2008, but the rate of decline varied from about 2% to 25% for different sub-regions.7 In Hudson Bay, summer ice (July through September) declined by almost 20% per decade from 1979 to 2006.5 For the Newfoundland and Labrador Shelves, ice extent declined in all seasons from 1979 to 2006, despite a period of greater ice cover in the 1990s.5 The Gulf of St. Lawrence, with no summertime ice, has experienced less change.5

**ICE ACROSS BIOMES**

**KEY FINDING 7.** Declining extent and thickness of sea ice, warming and thawing of permafrost, accelerating loss of glacier mass, and shortening of lake-ice seasons are detected across Canada’s biomes. Impacts, apparent now in some areas and likely to spread, include effects on species and food webs.

Ice is a defining feature of Canada’s ecosystems – permafrost (frozen ground) underlies almost half the country. Arctic sea ice (increasingly seasonal) extends across the North and along parts of the east coast and most Canadian lakes and many rivers are seasonally frozen. Outside of the huge ice sheets of Antarctica and Greenland, Canada has the largest area of glaciers in the world (200,000 km²), of which 75% is in the Arctic Archipelago.1

Ice ecosystems are important because they provide critical habitat for species adapted to living in, under, and on top of ice – from tiny one-celled organisms that live in the network of pores and channels within ice to polar bears. Sea ice helps regulate ocean circulation and air temperatures. Timing and duration of ice cover on rivers, lakes, and the sea are important factors in the types of plant and animal communities that water bodies support. Glaciers store fresh water and feed many of Canada’s largest rivers. Permafrost stores carbon and influences the structure of the landscape and storage and flow of water.

**GLOBAL TRENDS**

Worldwide, ice has been decreasing over the past several decades. Glaciers, including mountain glaciers that feed major rivers of China and India, are shrinking in mass and some have disappeared. Arctic sea-ice extent has decreased since 1979; Antarctic sea ice, while changing in some regions, does not show significant trends overall. Permafrost temperatures have increased in the past 20 to 30 years in most parts of the Northern Hemisphere.2, 3

The average of sea-ice extent for September (the month with the least ice cover) has declined over the Northern Hemisphere by 11.5% per decade since satellite measurements began in 1979.4, 5 Average ice extent declined for all seasons over this period.5 Ice is melting earlier in the year,6 and its age and distribution are changing. Multi-year ice is being lost, meaning that a greater proportion of ice is younger, thinner, and more subject to rapid break-up.7, 8

These changes in sea ice vary regionally. In the Canadian Arctic Archipelago, September ice extent declined by 9% per decade from 1979 to 2008, but the rate of decline varied from about 2% to 25% for different sub-regions.7 In Hudson Bay, summer ice (July through September) declined by almost 20% per decade from 1979 to 2006.5 For the Newfoundland and Labrador Shelves, ice extent declined in all seasons from 1979 to 2006, despite a period of greater ice cover in the 1990s.5 The Gulf of St. Lawrence, with no summertime ice, has experienced less change.5
Sea ice

Loss of sea ice has major ecological consequences for biodiversity. Open water has lower reflectivity than ice and holds more heat, increasing fog cover and reducing sunlight to near-shore plant and animal communities. Reduction of sea ice can expose shorelines to wave action and storms, leading to increased coastal erosion, as observed along the coast of the Beaufort Sea.\(^9,10\)

Species such as seals, polar bears,\(^11\) Arctic foxes,\(^12\) and some caribou herds\(^13\) that rely on ice for breeding or feeding habitat, and/or for movement across the landscape are profoundly affected by changes in sea-ice distribution and extent. Some seabirds and gulls – for example, the ivory gull, which has declined dramatically since the 1980s – depend on ice-edge habitat for survival.\(^14,15\) Earlier break-up has been linked to shifts in trophic dynamics in some species assemblages – for example, reduced abundance of Arctic cod along with an increase in capelin.\(^16\) Earlier break-up has also been linked to a shift to earlier breeding in seabirds such as thick-billed murres and glaucous gulls.\(^17-19\)

An emerging issue for Arctic marine biodiversity is the anticipated increase in shipping through an ice-free Arctic, which will expose sensitive marine ecosystems and biota to risk from invasive species released in ballast, increasing noise and contact with ships, and oil spills.\(^11,20\)

Some 4,000 polar bears, or about 20% of the total world population, range over sea ice of Hudson and James bays in the winter, feeding mainly on seals.\(^22\) When ice on these bays melts completely each summer, the bears come ashore where they spend up to five months (eight months for pregnant females) before the sea ice re-forms.\(^23\) The annual ice-free period has increased by almost three weeks since the mid-1970s.\(^24\) This has reduced the time that polar bears have on the ice to feed on seals and store fat for the summer.

The Southern Hudson Bay subpopulation is showing significant declines in body condition\(^21\) as well as declines in survival rates of all age and sex classes.\(^25\) Together these observations suggest that this subpopulation, which has been stable from the mid-1980s until at least 2003-2005, may decline in abundance in the future.\(^25\) The adjacent Western Hudson Bay subpopulation of polar bears has already declined from about 1,194 bears in 1987 to 935 in 2004, a decline of 22%.\(^26\) Coincident with this population decline were indications of declining body condition and reduced survival rates in some age classes.\(^26,27\) The impacts on polar bears documented in Hudson Bay are not yet occurring throughout the polar bear’s range, though they may be a harbinger of changes to come as sea ice declines around the circumpolar Arctic. Currently polar bear trends are variable, with some subpopulations being stable, some increasing, and some not known.\(^28\)
Glaciers

Mountain glaciers in southwestern Canada (including Peyto, Place, and Helm glaciers) show accelerating losses of ice starting in the mid-1970s, while Arctic glaciers (including Devon Ice Cap) began to show increased ice loss about 20 years later. The magnitude of the loss has been much greater for mountain glaciers than for the much colder, more massive Arctic glaciers and ice caps. Glaciers have also shrunk in northwestern Canada, in the Boreal and Taiga Cordillera ecozones, with 22% loss in the Yukon (1958-60 to 2006-08) and 30% in the Nahanni Region (1982 to 2008). In both these areas, many smaller glaciers at low elevations have completely melted away.

Western Canadian mountain glaciers drain into river systems, regulating summer river flow and influencing ecosystem characteristics, such as water temperature and chemistry, that affect aquatic life. The influence of glaciers is especially important for cold-adapted species like salmonids.

ICE ACROSS BIOMES

Source: adapted from Natural Resources Canada, 2009

Note: the number at the end of each line is the total reduction in thickness of each ice mass.

Source: Burgess and Koerner, 2009 and Demuth et al., 2009

Angel Glacier, Jasper National Park, Alberta
Lake and river ice

Greater variability from year to year, as well as overall trends toward shorter duration of lake and river ice, are closely linked to increasing spring and fall air temperatures. Ice is an important part of aquatic habitat and changes in ice cover alter a range of conditions, including length of the growing season for algae, water temperature, and levels of sediment and dissolved oxygen. Ice conditions also affect land animals by controlling access to the shoreline and to routes across lakes and rivers.

Lake-ice break-up is generally occurring earlier in the spring (1.8 days earlier per decade, on average). Ice freeze-up for the same set of large lakes (over 100 km²) shows a trend to later in the year (1.2 days per decade on average) for the majority of lakes – but less confidence is given to these fall measurements. The northern lakes showed the strongest rate of change, both in spring and in fall. This analysis is based on a combination of ground-based and remote-sensing data. Trends for the six most northerly lakes are based only on remote-sensing data from 1984 to 2004.

Lake-ice break-up is generally occurring earlier in the spring (1.8 days earlier per decade, on average). Ice freeze-up for the same set of large lakes (over 100 km²) shows a trend to later in the year (1.2 days per decade on average) for the majority of lakes – but less confidence is given to these fall measurements. The northern lakes showed the strongest rate of change, both in spring and in fall. This analysis is based on a combination of ground-based and remote-sensing data. Trends for the six most northerly lakes are based only on remote-sensing data from 1984 to 2004.

Ice cover forms in near-shore areas of the Great Lakes in December and January and in deeper offshore waters in February and March. It affects the temperature of the lakes and the timing of spring overturn (the mixing of the top water layer to the bottom). This in turn has an impact on the availability of coldwater habitat for coldwater species such as lake trout. Less ice cover leads to earlier spring overturn, earlier warming of deep water, and less coldwater habitat.
**Permafrost**

Permafrost (rock or soil that remains below 0°C throughout the year) is warming across the northern half of Canada.\(^{50}\) Since the 1980s, shallow permafrost has warmed at a rate of 0.3 to 0.6°C per decade in the central and northern Mackenzie Valley in response to an increase in air temperature.\(^{51}\) In the Eastern and High Arctic, shallow permafrost has also warmed, by about 1°C per decade, mainly since the late 1990s.\(^{52}\) In southern parts of the permafrost zone, the area of frozen ground and frozen peatlands has shrunk or disappeared in several ecozones — for example, along the Alaska Highway in the Boreal Cordillera,\(^{53}\) in the northern peatlands of the Boreal Plains, and Boreal Shield\(^{54},^{55}\) and in the peatlands of the eastern Taiga Shield\(^{56},^{57}\) and the peatlands of Nunavik in the Arctic.\(^{58}\)

Ecological consequences of changes in permafrost conditions are evident now, especially along the southern edges of its distribution in Canada. In colder regions of the country, it is likely that widespread impacts will occur in coming decades as frozen ground and the ice within it continue to warm. In subarctic and boreal regions, thawing permafrost and collapse of frozen peatlands may flood the land, replacing forest ecosystems with wet sedge meadows, bogs, ponds, and fens\(^{59},^{60}\) — as is happening now in northern Quebec.\(^{57},^{61},^{62}\) In colder areas, on the other hand, deepening of the ground layer that thaws in the summer (the active layer) or melting of ground ice can lead to collapse and drainage of channels and wetlands\(^{63}\) or lower the water table and dry out the land,\(^{64},^{65}\) altering plant species and affecting wildlife.\(^{64}\) There are signs of these ecological impacts now, especially in the Western Arctic.\(^{66},^{68}\)

---

**ICE ACROSS BIOMES**

Source: adapted from Smith et al., 2010\(^{52}\)

Source: adapted from Smith, 2010,\(^{50}\) based on Heginbottom et al., 1995\(^{69}\)

---

**PERMAFROST TEMPERATURES IN THE CENTRAL MACKENZIE VALLEY**

Temperature (°C) at 10 to 12 m depth, 1984 to 2008

Permafrost in the south-central Mackenzie Valley (Fort Simpson and Northern Alberta) is likely being preserved by an insulating layer of peat.\(^{70}\) Frozen peatlands are, however, decreasing in the southern part of the Mackenzie Valley, with an estimated loss of 22% at four study sites over the latter half of the 20th century. Permafrost further north (in the Mackenzie Delta) has warmed at a rate of 0.1 to 0.2°C per decade at a depth of 15 m since the 1960s.\(^{71},^{72}\) While these changes are consistent with changes in air temperature over the past few decades, changes in snow cover\(^{73},^{74}\) and in wildfires\(^{75}\) are also affecting rates and locations of warming and thawing of permafrost.
Permafrost has thawed at a rapid rate over the past 50 years in northern Quebec and the southern permafrost limit has retreated about 130 km north.62 As a result, the landscape is changing from frozen peat plateaus and palsas (mounds of peat and soil containing ice lenses) which support dry, lichen-heath ecosystems and black spruce trees, to wetter landscapes characterized by ponds, fens, and bogs. The changes are widespread – from east of the southern part of James Bay north to the southern boundary of the “continuous” permafrost zone on the Ungava Peninsula, where, in a study area along the Boniface River, palsas decreased by 23% in area and permafrost-thaw ponds increased by 76% between 1957 and 2001.57

Lichen, an important forage for caribou, is expected to decrease in abundance along with this transition.

Trends at Alert are characteristic of the High Arctic – although air temperatures have been increasing since the 1980s, distinct warming of permafrost has only been observed since the mid-1990s. In the eastern Arctic51 and Nunavik (northern Quebec),76-78 shallow permafrost cooled up to the early 1990s in response to a period of cooler air temperatures, then it started to warm as air temperatures increased.

Note: based on ground surveys and 1957 air photos. 
Source: adapted from Payette et al., 200461

Note: based on ground surveys and 1957 air photos. 
Source: adapted from Smith et al., 201052

Permafrost has thawed at a rapid rate over the past 50 years in northern Quebec and the southern permafrost limit has retreated about 130 km north.62 As a result, the landscape is changing from frozen peat plateaus and palsas (mounds of peat and soil containing ice lenses) which support dry, lichen-heath ecosystems and black spruce trees, to wetter landscapes characterized by ponds, fens, and bogs. The changes are widespread – from east of the southern part of James Bay north to the southern boundary of the “continuous” permafrost zone on the Ungava Peninsula, where, in a study area along the Boniface River, palsas decreased by 23% in area and permafrost-thaw ponds increased by 76% between 1957 and 2001.57

Lichen, an important forage for caribou, is expected to decrease in abundance along with this transition.
KEY FINDINGS

8. Protected areas  Both the extent and representativeness of the protected areas network have increased in recent years. In many places, the area protected is well above the United Nations 10% target. It is below the target in highly developed areas and the oceans.

9. Stewardship  Stewardship activity in Canada is increasing, both in number and types of initiatives and in participation rates. The overall effectiveness of these activities in conserving and improving biodiversity and ecosystem health has not been fully assessed.

10. Invasive non-native species  Invasive non-native species are a significant stressor on ecosystem functions, processes, and structure in terrestrial, freshwater, and marine environments. This impact is increasing as numbers of invasive non-native species continue to rise and their distributions continue to expand.

11. Contaminants  Concentrations of legacy contaminants in terrestrial, freshwater, and marine systems have generally declined over the past 10 to 40 years. Concentrations of many emerging contaminants are increasing in wildlife; mercury is increasing in some wildlife in some areas.

12. Nutrient loading and algal blooms  Inputs of nutrients into both freshwater and marine systems, particularly in urban and agriculture-dominated landscapes, have led to algal blooms that may be a nuisance and/or may be harmful. Nutrient inputs have been increasing in some places and decreasing in others.

13. Acid deposition  Thresholds related to ecological impact of acid deposition, including acid rain, are exceeded in some areas, acidifying emissions are increasing in some areas, and biological recovery has not kept pace with emission reductions in other areas.

14. Climate change  Rising temperatures across Canada, along with changes in other climatic variables over the past 50 years, have had both direct and indirect impacts on biodiversity in terrestrial, freshwater, and marine systems.

15. Ecosystem services  Canada is well endowed with a natural environment that provides ecosystem services upon which our quality of life depends. In some areas where stressors have impaired ecosystem function, the cost of maintaining ecosystem services is high and deterioration in quantity, quality, and access to ecosystem services is evident.
PROTECTED AREAS

KEY FINDING 8. Both the extent and representativeness of the protected areas network have increased in recent years. In many places, the area protected is well above the United Nations 10% target. It is below the target in highly developed areas and the oceans.

Protected areas are usually set aside to protect biodiversity or cultural resources.1 While some protected areas are managed exclusively for biodiversity, others allow recreational opportunities and still others allow resource use under management regimes that do not jeopardize the long-term sustainability of the natural environment. Protected areas are important because they provide places where ecological processes can evolve, refuges for species at risk, and repositories of genetic material. They also provide opportunities for recreation, spiritual renewal, and the conservation of places of cultural value. Protected areas are one tool for the protection of biodiversity. Sustainable management outside protected areas is equally important.

Terrestrial protected areas

Canada’s terrestrial protected areas network has increased steadily since 1992, when the United Nations Convention on Biological Diversity was signed. As of May 2009, 4,826 protected areas, covering 9.4% (939,993 km²) of the land base, had been designated.2 This includes: some very old parks, such as Banff National Park, created in 1885 and covering 6,641 km²; areas of international significance, such as Queen Maude Gulf Bird Sanctuary, covering 63,024 km² of Arctic tundra and marshes; and smaller areas representative of unique and endangered ecosystems, such as Point Pelee National Park, covering 15 km² in southeastern Ontario, with many at-risk species representative of the Carolinian forest. Protected areas established after May 2009, such as the expansion of Nahanni National Park Reserve from 4,766 km² to over 30,000 km², are not included in this analysis.

The majority (68%) of the protected areas in Canada are managed primarily for conservation of ecosystems and natural and cultural features. Over 1,500 protected areas (31%) have also been dedicated for sustainable use by established cultural tradition.3

Freshwater protected areas

In general, the protection of freshwater has not been a focus of protected area efforts, with the exception of Lake Superior National Marine Conservation Area, the largest freshwater protected area in the world. Located in the Canadian part of the Great Lakes, it consists of approximately 10,000 km² of lakebed and associated shoreline and 60 km² of islands and mainland.2

Note: the green dot is the total area protected, including protected areas with unknown dates of establishment. Source: Environment Canada, 20092
Marine protected areas

Approximately 45,280 km² (0.6%) of Canada’s oceans are protected. Although many protected areas on Canada’s coasts have marine components, the designation of specific marine protected areas is more recent. This includes some marine areas of global significance, such as the Gully Marine Protected Area, the largest underwater canyon in eastern North America, situated 200 km off the coast of Nova Scotia, and the Bowie Seamount, a large submarine volcano 180 km west of Haida Gwaii, B.C.

Global Trends

More than 12% of the world’s land and 5.9% of territorial seas are in protected areas. Protected areas are not distributed evenly. Fifty-six percent of global terrestrial ecoregions and 18% of the marine ecoregions have reached the 10% protected areas benchmark set by the Convention on Biological Diversity.

Gwaii Haanas Marine Conservation Area Reserve and Haida Heritage Site

Gwaii Haanas Marine Conservation Area Reserve and Haida Heritage Site is Canada’s newest marine protected area, covering 3,500 km² of water and seabed. With the adjacent Gwaii Haanas National Park Reserve, a contiguous protected area of 5,000 km² now extends from the alpine tundra of the mountaintops, through the temperate rainforest, to the deep ocean beyond the continental shelf. The marine area is noted for its diverse and unique ecosystems, which include deep-sea coral reefs, kelp forests, and eelgrass meadows. Nearly 3,500 marine species dwell in this area, including economically important fish and shellfish, breeding populations of seabirds, and marine mammals such as whales, dolphins, and sea lions. The area will be cooperatively managed by the Haida Nation and the federal government.

The Gully Marine Protected Area

The Gully, comprising an area of 2,364 km², is located offshore of Nova Scotia, near Sable Island. Its ecological significance is well established and includes the highest known diversity of coral in Atlantic Canada, 14 species of marine mammals, including the endangered Scotian Shelf population of northern bottlenose whales, and a wide variety of fish, seabirds, and bottom-dwelling animals. The Gully is managed using a zonation system that protects the deep water from all extractive activities, allows some fishing in the canyon head and sides, feeder canyons, and on the continental slope, and allows activities in the adjacent sand banks if they do not disrupt the ecosystem beyond natural variability.
PROTECTED AREAS

Percent protected by ecozone

Canada’s protected areas do not meet the Convention on Biological Diversity’s target to protect 10% of each of the world’s ecological regions. Although some terrestrial ecozones have greater than 10% protected, others, such as the Prairies and Mixedwood Plains, have a low percent protected, even though they have some of the highest biodiversity values in the country. No marine ecozones have 10% protected.

The use of conservation corridors to enhance the biodiversity value of current protected areas in a fragmented landscape is an important and more recent conservation tool.

Large protected areas are generally believed to have the greatest conservation value for the widest range of biodiversity. Less than 1% of Canada’s protected areas are larger than 5,000 km², but these large areas comprise 59% of the total area protected. The 3% of protected areas larger than 1,000 km² comprise 82% of the total area protected. In some places, adjacent protected areas create large protected area complexes. One of several examples is the Tatshenshini-Alsek/Kluane/Glacier Bay/Wrangell-St. Elias complex, which exceeds 98,000 km² and crosses B.C., Yukon, and Alaska.

Small protected areas have a role in protecting rare species or species requiring specialized habitat. They can also serve as links between larger reserves. Most (72%) of the protected areas in Canada are less than 10 km² in size. Altogether these small protected areas contribute less than 1% to the total area protected.
NATIONAL WILDLIFE AREAS IN NUNAVUT

National Wildlife Areas protect nationally significant habitat for migratory birds, support species or ecosystems at risk, or protect rare or unusual habitat. Critical natural features are conserved and activities considered harmful to species or habitats are prohibited. Three new National Wildlife Areas were created in Nunavut in June 2010 to protect critical habitat for Arctic seabirds, bowhead whales, and other species. They will be co-managed by local and federal governments, and were chosen based on advocacy and involvement from the communities of Qikiqtarjuak and Clyde River.

Akpait National Wildlife Area (774 km²) is an important area for migratory birds. It provides breeding habitat for one of Canada’s largest thick-billed murre colonies, black-legged kittiwakes, glaucous gulls, and black guillemots. It is also home to polar bears, walruses, and several species of seals.

Qaulluit National Wildlife Area (398 km²) is home to Canada’s largest colony of northern fulmars, representing an estimated 22% of the total Canadian population. Marine animals, including walrus and ringed seals, also use the waters of this National Wildlife Area.

Ninginganiq National Wildlife Area (Isabella Bay) (336 km²) protects critical summer habitat for the eastern Arctic population of bowhead whales, a Threatened species.

B.C. NORTH AND CENTRAL COAST-LAND USE PLAN

In one of the largest coordinated land-use planning efforts on record, B.C. and the majority of First Nations of the North and Central Coast, along with industry, environmental, and community leaders, agreed in 2007 to a unique management approach for 64,000 km² of the B.C. coast. Vast areas of temperate coastal rainforest have now been protected, including the largest intact temperate rainforest left on earth, home to thousands of species of plants, birds, and animals. The land-use planning agreement protects more than 30% of the land in 114 protected areas and recommends low-impact logging regulations that will conserve 50% of the natural range of old-growth forests outside of the protected areas. Applying this management approach recognizes the critical role played by land outside protected areas in the conservation of biodiversity. An adaptive management framework is in place to monitor, learn from, and improve the management of this area on an ongoing basis.
**KEY FINDING 9.** Stewardship activity in Canada is increasing, both in number and types of initiatives and in participation rates. The overall effectiveness of these activities in conserving and improving biodiversity and ecosystem health has not been fully assessed.

Stewardship is the responsible management of land and water to ensure its values and services are maintained for future generations. Strong stewardship initiatives are based on ecological principles and involve long-term commitments. They build on a strong connection between people and their natural heritage and encompass a broad suite of strategies. Stewardship is important because, while protected areas are the most visible form of ecosystem conservation, they conserve only a small fraction of the land and seascape. With continued pressure on the land and oceans, effective conservation tools that encourage good stewardship are crucial to ensure long-term ecosystem viability and sustainability. Stewardship also contributes to the economy by creating jobs and sustainable businesses.

Although stewardship is not new, it has increased greatly since the 1980s.1 There are now over a thousand stewardship groups and over one million people in Canada2 participating in thousands of initiatives on private and public lands. These vary from small grassroots community projects to programs operated by corporations, environmental non-government organizations, and all levels of government. In the last ten years, the importance of stewardship to long-term sustainability has been increasingly recognized and is being translated into policy and practice.1, 2 A good example is Canada’s Stewardship Agenda,3 endorsed in 2002 by Canada’s resource ministers.

There are no comprehensive national data on stewardship activities in Canada, nor are there comprehensive analyses of trends in its overall success in conserving biodiversity. This key finding uses examples from across the wide spectrum of stewardship initiatives to provide evidence of its growth. Improved monitoring of stewardship activities is required to determine its success.

**Standards and codes of practice**

Over 94% of Canada’s forests, 100% of water, and large areas of rangelands are publicly owned. A number of standards, codes of practice, and certification programs are available that encourage biodiversity conservation in these areas, and on private forest and agricultural land. Examples include:

- five Pacific coast and seven Atlantic coast fisheries that are certified as sustainable by the Marine Stewardship Council.4 For some fisheries, this is related to success in reducing by-catch. Levels of by-catch of cod, Greenland halibut, and American plaice are less than 2.5%5 and have been reported at lower levels in some areas;6
- 28% of farms in Canada indicated in 2006 that they had developed Environment Farm Plans to reduce the impact of agricultural practices on the environment.7

To earn certification for their forest lands, forest companies must demonstrate stewardship activities and biodiversity conservation under a sustainable forest management framework. In Canada, the amount of forest land receiving such certification has been steadily increasing since 2000. As of 2009, almost 1.5 million km², 87% of the working forest area in Canada, had received certification. This represents 40% of the world’s certified forest.8
Stewardship on private land

Approximately 50% of the 900,000 km² of private land in Canada was identified in 1994 as being at high risk of biodiversity loss due to ecosystem degradation and landscape fragmentation, making stewardship very important. Private land stewardship takes many forms, including financial incentives; broad international, national, and regional programs delivered by non-government organizations; demonstration and extension programs; information and education support; and small community-driven projects. Many of these, particularly education-related initiatives that strive to develop a long-term stewardship ethic, are particularly difficult to monitor in terms of results for biodiversity.

SUPPORT THROUGH INFORMATION

Sharing of information and best practices that promote adoption and maintenance of sustainable land use is an important part of stewardship. The Stewardship Centre for British Columbia is a virtual online centre that encourages environmental stewardship by providing technical support and capacity-building tools and resources. It fosters partnerships among stewardship organizations, government, and the private sector. The Centre’s Stewardship Series provides guidelines for local governments, developers, and stewardship groups to support healthier and more sustainable development practices. The Centre also helps to build capacity of stewardship organizations by providing core funding. The Centre is affiliated with the Stewardship Canada Portal, the Land Stewardship Centre of Canada, and other stewardship centres across the country.

LAND SEEDED TO WINTER WHEAT IN THE PRAIRIES

<table>
<thead>
<tr>
<th>Area (thousands km²), 1992 to 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Source: Statistics Canada, 2010

Partners through the initiative influenced the stewardship of over 70,000 km² of wetland, shoreline, grassland, and agricultural habitat across southern Canada between 2000 and 2009.
Land trusts are non-profit organizations, usually community based, working for the long-term protection of natural heritage, and some more recently for protection of agricultural land. Taking many forms and using a variety of approaches, they are playing an increasingly important role in conservation of biodiversity in Canada. They have been growing in size and number over 85 years, with volunteers as their backbone. The number of land trusts in Canada roughly doubled from 1995 to 2005\textsuperscript{14} to over 150 organizations.\textsuperscript{1} As of June 2010, the 50 member groups of the Canadian Land Trust Alliance had protected over 27,000 km\textsuperscript{2} of land through the involvement of almost 20,000 volunteers, over 200,000 members and supporters, and 800 staff.\textsuperscript{15} 

**TAX INCENTIVE PROGRAMS: ONTARIO**

Two voluntary programs in Ontario, the Managed Forest Tax Incentive Program and the Conservation Land Tax Incentive Program, provide examples of tax incentives to private landowners to encourage long-term stewardship and biodiversity conservation. Both programs provide property tax relief to landowners who protect conservation values – such as forests, wetlands, and endangered species habitat – on their lands.\textsuperscript{17, 18} Participation in both has increased since their inception. By 2008, over 11,000 properties were enrolled in the Managed Forest Tax Incentive Program, covering 7,580 km\textsuperscript{2}, and over 16,000 properties covering over 2,170 km\textsuperscript{2}, were enrolled in the Conservation Land Tax Incentive Program.\textsuperscript{19}

**CONSERVATION EASEMENTS IN THE PRAIRIES**

A conservation easement is a legal tool that imposes restrictions on current and future use of land by registering the restriction on the land title. Of the approximately 1,200 km\textsuperscript{2} of land under 1,400 conservation easements across Canada in 2007, about 90% were in the Prairies (representing 70% of the total number of easements).\textsuperscript{16} Much of the habitat important for biodiversity in the Prairies is on agricultural land, and this is where 90% of prairie easements are located. Some agricultural uses, such as grazing, continue under the easements. The number of conservation easements registered per year in the Prairies has increased from fewer than 10 in 1996 to over 180 in 2006.\textsuperscript{16}

Source: adapted from Campbell and Rubec, 2006\textsuperscript{14}

Source: adapted from Good and Michalsky, in press\textsuperscript{16}

Source: adapted from Ontario Ministry of Natural Resources, 2008\textsuperscript{19}
Community-based stewardship

Stewardship initiatives led by communities or individuals are one of the most promising areas of stewardship with great potential for expansion. Grassroots stewardship projects inspired by local watershed and landscape issues work to protect and conserve biodiversity. The total number of community-led initiatives in Canada is not known.

LINKING TRADITIONAL KNOWLEDGE AND SCIENCE: NUNAVUT COASTAL RESOURCE INVENTORY

Knowledge co-produced by holders of Traditional Knowledge and scientists forms the basis of many northern resource management and stewardship initiatives. Inuit Qajimajatuqangit (Inuit Traditional Knowledge), for example, is based on many generations of experience and understanding of ecosystems and local conditions in the North and brings that perspective to stewardship initiatives. The Igloolik pilot project of the Nunavut Coastal Resource Inventory, a collaborative coastal monitoring program of the Government of Nunavut, the Nunavut Research Institute, and the Igloolik Hunters and Trappers Organization, initiated in 2007, used both community elders’ knowledge and science to produce a database, including maps of mammal migration routes and a wealth of information on use of coastal locations by marine mammals. The information is available to all partners in the inventory and serves as a model for future collaborative work in other communities. The inventories can be used, for example, in the development of sustainable fisheries, coastal management plans, environmental impact assessments, sensitivity mapping, community planning, development of coastal parks, and as a means to preserve local ecological knowledge.

PROTECTING EIDER DUCKS THROUGH COMMUNITY STEWARDSHIP, LABRADOR

Many coastal communities have a long history of settlement and use of coastal resources. The residents around St. Peter’s Bay, Labrador, provide a good example of coastal community-based stewardship. Small islands provide critical nesting habitat for common eiders and reducing disturbance and predation during nesting is essential to their survival. St. Peter’s Bay residents have been installing and maintaining nest shelters since 2003 to protect the nests and young, and educating their communities on good stewardship practices. In 2009, recognizing the importance of the bay for up to 650 common eider nesting pairs, three communities took their stewardship commitment one step further by signing a Coastal Stewardship Agreement with the provincial government to ensure the long-term sustainability of the eider population by conserving approximately 38 km² of habitat.
KEY FINDING 10. **Invasive non-native species are a significant stressor on ecosystem functions, processes, and structure in terrestrial, freshwater, and marine environments. This impact is increasing as numbers of invasive non-native species continue to rise and their distributions continue to expand.**

**Invasive non-native species**, also called **invasive alien species**, are species of plants, animals, and micro-organisms introduced by human action outside their natural past or present distribution, and whose spread threatens the environment, economy or society, including human health. Twelve percent of the 11,950 species assessed in *Wild Species 2010: the General Status of Species in Canada* are not native. While only a small percentage of them become established and an even smaller number become invasive, the ecological and economic damage of those few species can be enormous. **Invasive non-native species harm biodiversity** because they can displace native species and compete with them for resources, degrade habitat, introduce diseases, and/or breed with native species to form hybrids. Numerous factors are responsible for the spread of invasive non-native species, including climate change, unintentional introductions from ship ballast and along roads, intentional introductions, and the increased susceptibility of altered or degraded ecosystems. The control of invasive non-native species is expensive and their eradication is seldom possible. They are considered the second greatest threat to biodiversity worldwide, after habitat destruction, and are an emerging threat to northern Canadian ecosystems as climate warms and species intolerant of current northern climatic conditions expand their ranges.

**Coastal marine ecosystems**

Although many non-native species have become established in Canada's coastal marine waters, the impacts of invasive non-native species are most acute in the bays of P.E.I. Intensive agriculture and aquaculture activities have made P.E.I.'s coast more susceptible to the establishment and impacts of invaders. For example, since 1997, four species of sea squirts, or tunicates, have established, and are invasive, in P.E.I. Although established elsewhere in the southern Gulf of St. Lawrence, they are only invasive in P.E.I. There is also some evidence that another invasive species, the European green crab, preys on the predators of sea squirts, exacerbating the problem in P.E.I. The European green crab is an aggressive competitor of native crabs and a predator of clams, mussels, juvenile fish, and many other species. It has recently become established on both the east and west coasts of Canada, although its establishment is too recent for its full impact to be known. The main source of coastal marine invasions in Canada has been transport on the hulls and in the ballast water of ships. New regulations on ballast water are designed to prevent further introductions through this pathway.

**Global Trends**

Invasive non-native species have contributed to nearly 40% of all animal extinctions for which the cause is known.
Native freshwater mussels are ecologically important as natural biological filters, food for aquatic species, and indicators of good water quality. Nearly 72% of the 300 freshwater mussel species in North America are vulnerable to extinction or are already extinct. Native freshwater mussels were virtually extirpated from the offshore waters of western Lake Erie between 1989 and 1991 and from Lake St. Clair between 1986 and 1994. Their decline has been attributed to a number of human stressors such as pollution, overexploitation, and habitat destruction by dams, in addition to declining water levels, and competition with non-native species such as zebra and quagga mussels. Free-flowing rivers can provide a refuge for native mussel species by limiting zebra and quagga mussel colonization. However, non-native mussels can still establish in regulated rivers with reservoirs. In a 2004/2005 survey, zebra mussels were noted at all sites sampled downstream from the Fanshawe Reservoir in the lower Thames River, a system that has one of the most diverse freshwater mussel communities in Canada.

Great Lakes

Invasive non-native species are responsible for the loss of much of the original biotic community of the Great Lakes. The demise of Great Lakes native biota started with the opening of the Welland Canal in 1829, the accidental introduction of sea lamprey in 1920, and the subsequent collapse of lake trout. Non-native species now dominate the Great Lakes, with enormous ecological and economic consequences. One study estimated the economic loss caused by non-native invasive species in the Great Lakes to be as much as $5.7 billion annually.
INVASIVE NON-NATIVE SPECIES

Pathogens and diseases of wildlife

Pathogens are disease-causing organisms. They come from a large spectrum of species groups, including worms, insects, fungi, protozoa, bacteria, and viruses. Many pathogens are native to Canada and the wildlife diseases they cause are part of the normal functioning of ecosystems. However, some recent disease outbreaks appear to be caused by invasive non-native pathogens or new strains of native pathogens. These include: a bacterium of poultry that also affects house finches; avian influenza, a usually benign virus of ducks that now exists in a strain deadly to poultry; duck plague, a virus native to Eurasia that can kill wild waterfowl; a chytrid fungus of amphibians; and West Nile virus, affecting mammals, birds, reptiles, and people.20

A chytrid fungus of the skin has been linked to worldwide declines in amphibian populations25 and is generally believed to be the largest infectious disease threat to biodiversity.26, 27 The origins of chytrid fungus in North America are unclear. It may have originated in Africa and spread through trade of African clawed frogs, which were widely used in human pregnancy tests.24, 26 Trade of other species, such as the American bullfrog, may have contributed to its spread.24 There is some evidence that chytrid fungus has always been present in North America, but that environmental stressors, such as pesticides and climate change, have made amphibians more susceptible to it.28-30 The earliest record of chytrid fungus outside of Africa is from Quebec, in 1961.31 Since then, chytrid fungus has been found in British Columbia,31 Alberta,20 Saskatchewan,32 Ontario, Quebec, New Brunswick, Nova Scotia,31 and, most recently, Prince Edward Island,33 Yukon,34 and the Northwest Territories.35

West Nile virus cycles in nature between a wide range of wild bird species and a narrow range of mosquito species. It was transported to North America from Afro-Eurasia.22 First detected in Canada in 2001, it affected all provinces from Nova Scotia to Alberta by 2003, and by 2009, it had reached British Columbia. West Nile virus has killed thousands of corvids (crows, jays, magpies, and their relatives) and fewer non-corvid birds.23

Source: Leighton, 201020 adapted from Health Canada, 200321

Source: adapted from Weldon et al., 200424

A chytrid fungus of the skin has been linked to worldwide declines in amphibian populations25 and is generally believed to be the largest infectious disease threat to biodiversity.26, 27 The origins of chytrid fungus in North America are unclear. It may have originated in Africa and spread through trade of African clawed frogs, which were widely used in human pregnancy tests.24, 26 Trade of other species, such as the American bullfrog, may have contributed to its spread.24 There is some evidence that chytrid fungus has always been present in North America, but that environmental stressors, such as pesticides and climate change, have made amphibians more susceptible to it.28-30 The earliest record of chytrid fungus outside of Africa is from Quebec, in 1961.31 Since then, chytrid fungus has been found in British Columbia,31 Alberta,20 Saskatchewan,32 Ontario, Quebec, New Brunswick, Nova Scotia,31 and, most recently, Prince Edward Island,33 Yukon,34 and the Northwest Territories.35
Terrestrial plants

Invasive non-native plants are one of the greatest threats to Canada’s croplands, rangelands, and natural areas. They degrade productivity and biological diversity; they are responsible for significant economic loss; and, they affect our trade with other countries. Approximately 1,229 (24%) of the 5,087 known plants in Canada are not native. Of these, 486 are considered weedy or invasive.36

The most rapid accumulation of non-native plant species was between 1800 and 1900, a period of increased trade, immigration, and colonization. During this time many invasive plants were brought into Canada intentionally. The rate of new invasive plant introductions has slowed since the early 1900s, although range extension of established species is an ongoing problem. The geographic origin of most of the non-native plants in Canada is western Europe, reflecting dominant trade patterns of the past. Modern trade patterns point to new risks from the United States and Asia.36

Invasive non-native plants can cause ecological damage over a wide area and economic damage to multiple sectors. Some of the most damaging non-native plants include Canada thistle, leafy spurge, and knapweeds.37 Wetland plants are among the most aggressive invaders, changing vegetation structure, reducing the diversity of native plants and associated wildlife, and altering basic wetland functioning. Some of the most aggressive wetland invaders include purple loosestrife and European common reed.38

European common reed, a subspecies of the native common reed, is one of the most dangerous non-native invaders of natural habitats in Canada.40, 41 It is currently a major problem in the east, where it forms dense stands to the exclusion of most native species.40 It first established in Nova Scotia in 1910,40 but spread most significantly from 1980-2002.39 Human-made linear wetlands, such as ditches, can act as dispersal corridors because they are rich in nutrients, extensively interconnected, and salt accumulation in them creates a competitive advantage for the salt-tolerant European common reed.42 Expansion of the European common reed jeopardizes ecosystem functioning because it reduces biodiversity and is of lower nutritional43 and habitat value44 than the native species it replaces. The European common reed is expected to expand its range to the Prairie provinces within one or two decades, where it could impede water flow in irrigation canals.40 Early knowledge allows for some time to conduct the research necessary to prevent its spread.40
**CONTAMINANTS**

**KEY FINDING 11.** Concentrations of legacy contaminants in terrestrial, freshwater, and marine systems have generally declined over the past 10 to 40 years. Concentrations of many emerging contaminants are increasing in wildlife; mercury is increasing in some wildlife in some areas.

Contaminants are substances that are introduced into the environment through human activity. Some, like mercury, are naturally occurring but are increased in concentration through human activity to levels that could harm ecosystems and humans. Contaminants may travel great distances through the atmosphere and oceans and end up in ecosystems distant from their sources. This key finding considers only contaminants that persist in the environment and accumulate in the tissues of plants and animals. Legacy contaminants have been banned or restricted but are still widespread in the environment. Emerging contaminants are newer chemicals, or substances that have been in use for some time and have recently been detected in the environment – usually emerging contaminants are still in use or only partially regulated.

Contaminants can harm species and ecosystems and impair ecosystem services. They can directly affect animals when present in their diets, such as by impairing reproduction, and can also become a problem for humans who rely on them for food – particularly for Aboriginal people with diets heavily reliant on marine mammals and fish. The widespread presence of contaminants in wildlife has been a concern in Canada since the 1970s and concentrations of selected contaminants have been monitored in some species and locations over various periods since then. There are long-term, ongoing datasets adequate for trend analysis, but these are restricted to a few areas, such as the Great Lakes and parts of the Arctic.

Several persistent organic pollutants, including the pesticide DDT and the industrial chemicals PCBs, are considered legacy contaminants. Despite being banned or restricted, some of these substances persist at levels that may impair animal health in some populations of long-lived top predators (including killer whales and polar bears) and in areas where there is a history of heavy use of some of these substances (such as the Great Lakes).

Brominated flame retardants, for example PBDEs, are one class of emerging contaminants that have been detected in the environment, even in remote locations, at increasing levels since the mid-1980s. Concentrations of some brominated flame retardants show signs of stabilizing or declining in the last few years in response to new regulation and reductions in their use. Other emerging contaminants include some pesticides and herbicides in current use.

Mercury is a third example of a contaminant that can accumulate in wildlife. While mercury is a naturally occurring element, much of the mercury in marine and freshwater systems is from industrial sources such as coal burning – and mercury releases are increasing in parts of the world. Mercury levels in animals are highly variable and trends are mixed.

---

**RECOVERY OF PEREGRINE FALCONS IN CANADA**

Number of sites occupied by peregrines, 1970 to 2005

The story of the peregrine falcon shows that contaminants can have major effects on biodiversity and that banning and restricting contaminants works. Peregrines in Canada declined dramatically from the 1950s to 1970s, mainly from egg-shell thinning caused by DDT and its breakdown products. With the banning of DDT in Canada in 1970, 1972 in the U.S., and 2000 in Mexico, DDT slowly declined in the environment. Conservation actions and reintroductions helped populations to increase once DDT levels were low enough for eggs to hatch successfully. Some parts of Canada such as the Okanagan Valley of British Columbia may still have too much legacy DDT for peregrine falcons to nest successfully.
The charts show a range of trends and levels of two legacy contaminants (PCBs and DDT), mercury, and an emerging contaminant (PBDEs) in wildlife. Amounts and trends are partly related to proximity to contaminant sources and partly to other factors that influence an animal’s exposure to and uptake of contaminants, including position in the food web. Magnitudes of contaminant levels should be compared from chart to chart only in general terms – datasets are not all comparable in the types of tissues sampled and in analysis and data reporting methods.

Note: DDE is a breakdown product of DDT.

Sources: burbot: Stern, 2009;
murres: Braune, 2007; updated by author; beluga: Stern, 2009 and Tomy, 2009; cormorants and gulls: Environment Canada, 2009; lake trout: Carlson et al., 2010 and Ismail et al., 2009.
CONTAMINANTS

Interactions between contaminants and environmental change

Changes in environmental conditions caused by stressors, including climate change and invasive non-native species, may, in some cases, make wildlife more vulnerable to contaminants. Environmental change can increase the exposure of some aquatic species to contaminants through changes in water flow and chemistry and through changes in food webs. Interactions may also make animals more vulnerable to the effects of contaminants. For example, salmonids in the Great Lakes have switched to a diet that includes alewife, an invasive non-native fish, leading to thiamine (vitamin B1) deficiencies that may interact with the effects of contaminants like PCBs to increase mortality rates in young fish.

Trends in contaminants in the Great Lakes

Legacy contaminants and mercury are generally decreasing in the Great Lakes in response to clean-up of contaminated sites and improved pollution control. However, the large volumes of water and sediment in the system act as a storehouse – contaminants continue to be released from sediments and to recycle through the water, sediment, and food webs. Contaminants also continue to be deposited into the lakes through long-range atmospheric transport and, in the case of mercury, from industrial emissions in the Great Lakes Basin. The net result is that rates of decline of some legacy contaminants and mercury have slowed in areas of the Great Lakes, leaving some contaminants at levels that are of concern and likely to remain so for some time to come.

Brominated flame retardants (PBDEs) increased rapidly in fish and birds starting in the early 1980s but levels have now stabilized or are declining in response to action taken to curtail the use and release of these substances. Many other emerging contaminants have been detected more recently in environmental samples, often in trace amounts, but little is known about the risk to ecosystems from most of them. Chemicals of concern include PFOS, originating in water-repellent coatings and fire-suppression foam, detected in fish samples throughout the Great Lakes, and known to build up in food webs. Emerging contaminants also include endocrine disrupting substances, which come from a range of sources, including pharmaceuticals. Potential effects include abnormal gonad development in fish. Many emerging contaminants do not originate in industrial emissions, but rather from use and disposal of health and personal-care products and consumer goods, leading to a need for new risk management approaches for contaminants in the Great Lakes.

IMPACT OF LESS SEA ICE ON CONTAMINANTS IN SEALS AND POLAR BEARS

With changes in sea-ice conditions, western Hudson Bay polar bears are feeding less on ice-associated bearded seals (which eat invertebrates) and more on open-water seals (which eat fish). Because fish-eating seals have higher levels of contaminants, some legacy contaminants in polar bears may not be declining as much as would be expected if their diet had not changed and levels of emerging contaminants may be increasing at a faster rate. Concentrations of brominated flame retardants (PBDEs) in western Hudson Bay polar bears are estimated to have increased 28% faster from 1991 to 2007 than would have occurred if the bears had not changed their diet.

IMPACT OF CHANGES IN FIRE REGIMES ON MERCURY IN FISH

Changes in fire regimes can increase algae in lakes and contaminants in fish. A study in Jasper National Park found that fire in the catchment area of a lake in 2000 increased the input of nutrients to the lake over a period of several years. This led to an increase in production of algae, which led to an increase in the abundance of invertebrates, making the lake’s food web more complex. The outcome was an increase in mercury accumulating in lake trout and rainbow trout.

PCBs IN GREAT LAKES FISH

Total PCB concentrations in lake trout (walleye in Lake Erie) Parts per million (logarithmic scale), 1972 to 2002

PCBs in fish declined rapidly until the mid-1980s, halving in concentration every three to six years. Since then, PCBs in fish show either slow declines or no significant trend.
Effects of contaminants on wildlife

Persistent organic pollutants, as well as mercury, tend to accumulate in aquatic ecosystems more than in terrestrial ones. These levels are magnified as they move up the food web. This means that the highest levels of these contaminants are found in top predators – especially marine mammals and fish-eating birds.

There is no evidence of current widespread effects of contaminants on Canadian Arctic wildlife, though polar bears of southern and western Hudson Bay, as well as some high Arctic seabirds, have contaminant levels that may be placing them at risk. However, what is known is based only on studies of a few species and is usually based on the effects of a single contaminant. Little is known about impacts of the contaminant mixtures that wildlife are exposed to, or about interactions of contaminants with other changes in ecosystems.

Contaminant levels are much higher in some areas of southern Canada than they are in the Arctic (see graphs of contaminant trends earlier in this section). Levels of contaminants measured in wildlife often exceed thresholds beyond which biological effects are known to occur from laboratory studies (usually based on species other than those of concern in the wild). While direct evidence of impacts on wildlife populations is difficult to obtain, associations between high contaminant levels and observations of effects – like tumours, abnormal gonads, or poor reproductive success – underscore conservation-level concerns for some populations. The clearest example of known impacts is that of DDT-associated egg-shell thinning in birds but high levels of contaminants are suspected to contribute to declines in several wildlife populations, for example, herring gulls in the Great Lakes and beluga whales in the St. Lawrence Estuary.

PCBs and PBDEs are known to adversely affect neurological development, reproductive development, and immune system function of marine mammals. Because they are long-lived top predators, killer whales accumulate high concentrations of persistent organic pollutants, including PCBs and PBDEs. The concentrations of PCBs in the three killer whale populations along the B.C. coast exceed levels known to affect the health of harbour seals, and the PCB levels of two populations are among the highest in marine mammals in the world.

The large variation in contaminant concentrations among the populations is related to their feeding habits. Transient whales feed on marine mammals, placing them higher in the food web, while both resident populations feed largely on salmon that acquire contaminants from global sources in the North Pacific Ocean. Southern resident whales also feed on prey that pick up contaminants from the industrial coastal waters of southern B.C. and northwest Washington, leading to higher PCB and PBDE accumulation. These or other contaminants may be a factor in the decline of this endangered population of killer whales (see Marine Biome).
NUTRIENT LOADING AND ALGAL BLOOMS

KEY FINDING 12. Inputs of nutrients to both freshwater and marine systems, particularly in urban and agriculture-dominated landscapes, have led to algal blooms that may be a nuisance and/or may be harmful. Nutrient inputs have been increasing in some places and decreasing in others.

Nutrient loading refers to the release, through human activities, of nitrogen, phosphorus, and other nutrients into the environment. Fertilizers from agriculture, phosphates from detergents, and sewage from urban development are examples of nutrients that can be loaded into aquatic systems. Although increased nutrients stimulate the growth of phytoplankton – the bacteria and algae at the foundation of aquatic food webs – this can have negative impacts on aquatic ecosystems.

Nutrient loading can result in algal blooms – rapid increases in phytoplankton growth – and sometimes dead zones. Algal blooms can cause dead zones through two mechanisms: 1) they can consume so much oxygen that other plants and animals can no longer survive; and, 2) a few species of phytoplankton – primarily blue-green algae in freshwater and dinoflagellates in the ocean – can form harmful blooms that produce toxic compounds that kill other organisms. Algal blooms have been the cause of many massive fish kills. However, only about 2% of the 2,000 described phytoplankton species in freshwater, and of the estimated 3,400-4,000 known phytoplankton species in marine systems, are toxic.

Although algal blooms do occur naturally, nutrient loading contributes to increases in the frequency, areal extent, and intensity of algal blooms. Increasing water temperatures may also contribute, and climate change is expected to cause changes in the distribution, seasonality, and frequency of algal blooms.

Algal blooms – both toxic and non-toxic – occur across Canada in lakes, reservoirs, ponds, rivers, swamps, and estuaries. They have been reported in coastal and inland B.C., the Prairies (Qu’Appelle Lake system), central Canada (Lake Winnipeg and Lake of the Woods), the Great Lakes and Boreal Shield of Ontario, the Mixedwood Plains, Boreal Shield and St. Lawrence River in Quebec, and the Atlantic Maritime.

Global Trends

More than 400 dead zones have been reported in coastal waters worldwide. Nutrient loading to terrestrial, freshwater, and coastal waters ecosystems are projected to increase substantially in the future.
The Lake Winnipeg drainage basin is the second largest in Canada, spanning 953,000 km² across four Canadian provinces and four U.S. states. Sixty-eight percent of the watershed is agriculture – cropland and pastureland. The watershed is also home to 6.6 million people and 20 million livestock.\textsuperscript{11} Intensification of agriculture, land clearing, wetland drainage, and rapid growth of human populations has led to an increase in nitrogen and phosphorus in the lake.\textsuperscript{11, 12} One of the most noticeable symptoms of increased nutrient loading has been the development of extensive surface algae blooms comprised largely of blue-green algae. Blooms have been as large as 10,000 km², at times covering much of the north basin of the lake. Between 1969 and 2003, the average biomass of phytoplankton increased five-fold. A shift in species composition towards blue-green algae has been particularly pronounced since the mid-1990s.\textsuperscript{11}

Algal blooms in Lake Winnipeg are a concern to recreationists and commercial fishers, as they foul beaches and cover nets. Decomposition of large algal blooms can result in low oxygen conditions, which can negatively affect fish and other aquatic life. Nevertheless, algal blooms have not resulted in a decline in the valuable Lake Winnipeg fishery, and, in fact, walleye production in Lake Winnipeg is now the highest it has ever been in the history of the commercial fishery.\textsuperscript{11}

Harmful algal blooms appear to be increasing in lakes and reservoirs across Canada, although long-term monitoring to verify this is weak. Available trends are usually for less than 10 years and reports of increases in algal blooms are often anecdotal. In Quebec, the number of water bodies experiencing harmful algal blooms increased from 21 in 2004 to 150 in 2009.\textsuperscript{13} In Alberta, 75% of lakes and reservoirs contain harmful algal blooms at least once in the open water season.\textsuperscript{14} In Fort Smith, near the northern edge of the Boreal Plains, Aboriginal people have noticed an overabundance of algae covering river banks and clogging fishing nets.\textsuperscript{15}
GREAT LAKES ALGAL BLOOMS

With the exception of shallow bays and shoreline marshes, the Great Lakes were historically cool and clear — that is, they had naturally low productivity. Urbanization and agricultural development have resulted in nutrient loading, particularly from sewage, phosphate detergents, and fertilizers.

In the 1920s, Lake Erie was the first of the Great Lakes to demonstrate a serious problem from nutrient loading. Not only is it the most vulnerable of the Great Lakes because it is the shallowest, warmest, and naturally most productive, but it was the first to have intense agricultural and urban development on its shorelines.

By the 1960s, public alarm was raised by the appearance of filamentous algae covering beaches in green, slimy, rotting masses and people feared that Lake Erie was “dying”. Research showed that phosphorus was the main culprit, and the 1972 Great Lakes Water Quality Agreement introduced regulations that reduced point sources of phosphorus entering the lakes. Ten years later non-point sources of phosphorus were also controlled, leading to a clean-up of the lakes and one of the great success stories in international environmental cooperation.

In the past decade, massive toxic blue-green algae, or harmful algal blooms, have reappeared in lakes Erie, Ontario, Huron, and Michigan as well as some neighbouring lakes, such as Lake Champlain. The causes of recent algal blooms are more complex than in earlier times and the effects are more detrimental. Phosphorous inputs appear to be increasing again, particularly from agricultural watersheds in Ohio, and an increasing proportion of the phosphorus is in a form that is biologically available to fuel near-shore algal blooms. Invasive quagga mussels have compounded the problem due to their capacity to selectively remove edible algae, leaving behind the toxic blue-green algae, Microcystis.

Blooms of Microcystis are of particular concern for two reasons: 1) they are a poor food source for zooplankton that are, in turn, important food for fish larvae; and 2) they can contain a toxin that, when ingested by animals, including humans, may cause liver damage.

Species Composition of Phytoplankton in Lake Erie

Significant decreases in chlorophytes (green algae) and increases in cyanobacteria (blue-green algae) have occurred from 2003 to 2005. Blue-green algae cause harmful algal blooms, green algae do not.

Source: Millie et al., 2009
The Okanagan River Basin drains through a chain of lakes in the southern interior of B.C., ultimately leading to the Columbia River. Since the early 1970s, controls have been introduced to reduce nutrient pollution in the region, with the most significant reductions made in agricultural and sewage treatment inputs. This has resulted in significant declines in phytoplankton (measured as chlorophyll a) and phosphorous and an increase in dissolved oxygen. Skaha Lake is one of the lakes in the Okanagan where nutrient loading has been reduced.

HARMFUL ALGAL BLOOMS IN THE OCEANS

In marine systems, blooms of toxic phytoplankton are referred to as either red tides or harmful algal blooms. They can cause severe health effects in humans and they are also responsible for extensive mortality of fish and shellfish. They have been implicated in episodic mortalities of marine mammals, seabirds, and other animals dependent on the marine food web. Since the 1970s, harmful algal blooms have occurred more frequently, increased in size, and expanded their global distribution.5

The Bay of Fundy has a long history of algal blooms. Extended periods of low wind, fog, and warmer water conditions in the summer are conducive to algal blooms, which can discolor the water, form red tides, and result in shellfish toxicities harmful to the health of animal and human consumers.27

Harmful algal blooms have appeared in recent years on the west coast of North America, including the west coast of Vancouver Island. These algal blooms may be associated with declines in dissolved oxygen observed over the past 25 years. Massive fish kills, associated with these algal blooms, have been observed off the Washington and Oregon coasts but not off the west coast of Canada.28

Note: toxic algal bloom off the west coast of Vancouver Island and Washington State. Left is the natural colour; right has been enhanced to reveal chlorophyll concentrations.

Source: NASA, Earth Observatory, 200929
**ACID DEPOSITION**

**KEY FINDING 13.** Thresholds related to ecological impact of acid deposition, including acid rain, are exceeded in some areas, acidifying emissions are increasing in some areas, and biological recovery has not kept pace with emission reductions in other areas.

Acid deposition, sometimes referred to as acid rain, is produced when sulphur and nitrogen-based pollutants react with water in the atmosphere and are deposited on the Earth’s surface. More than just acid rain, it includes acidifying gases and dry particles. The pollutants originate from industrial processes and can travel thousands of kilometres. It is the combination of acid deposition and the sensitivity of the land, water, flora, and fauna to acid that determines the severity of the impact on biodiversity. **Acid deposition is important** because algae, invertebrates, fish, amphibians, and birds are affected by increased acidity through reduced survival, growth and reproductive success, and loss or alteration of prey species. The acidification of aquatic systems can lead to increases in methylmercury, which bioaccumulates, affecting embryos and young animals. Acidification may also negatively affect the growth rate and health of trees, for example, sugar maple and red spruce in northeastern North America.

**Terrain sensitivity and thresholds**

Ecosystems have different sensitivities to acid depending upon their geology and soils. Thus the maximum level of acid deposition that terrain can withstand without harming ecological integrity, called the “critical load,” differs across ecosystems. Acid-sensitive terrain is generally underlain by slightly soluble bedrock and overlain by thin, glacially derived soils and has less buffering capacity.

Critical loads can be exceeded either when extremely sensitive terrain receives low levels of acid deposition or when less-sensitive terrain receives high levels of acid deposition. The inset map shows where critical loads have been exceeded in the Boreal Shield Ecozone+. The potential for critical loads to be exceeded in northwest Saskatchewan is also a concern due to the high degree of acid sensitivity of many of the lakes in this area (68% of 259 lakes assessed in 2007/2008) and its location downwind of acidifying emissions from oil and gas developments. Similarly, transportation-related sulphur emissions in southwest B.C. are an emerging issue, with terrestrial critical loads exceeded in 32% of the Georgia Basin in 2005/2006.
From 1980 to 2006, sulphur dioxide emissions in Canada and the U.S. declined by about 45% and emissions of nitrogen oxides declined by about 19%. Although significant declines in lake sulphates followed closely behind the emission reductions, the response of lake acidity, measured by pH, has been slow and less widespread, due in part to declines in calcium which are also related to acid deposition. Declines in calcium also threaten keystone zooplankton species.

Encouraging biological improvements have been seen in some locations. Even with chemical recovery, however, biological communities are likely to remain altered from their pre-acidification state because many factors beyond acidity influence biological recovery.

Global Trends

Once recognized as a problem only in Europe and parts of North America, acid deposition is now also an environmental issue in Asia and Pacific regions. Significant reductions in sulphur emissions have been achieved in parts of Europe.
**KEY FINDING 14.** Rising temperatures across Canada, along with changes in other climatic variables over the past 50 years, have had both direct and indirect impacts on biodiversity in terrestrial, freshwater, and marine systems.

**Climate change** includes a rise in global temperatures and more frequent extreme weather events, due to human activities that alter the chemical composition of the atmosphere through the buildup of greenhouse gases that trap heat and radiate it back to the earth’s surface. **Climate change is important** because climate shapes the distribution of organisms and the nature and character of ecosystems. Projected increases in temperature may exceed biological tolerances for many species and ecosystems in Canada, resulting in decreased capacity to recover from disturbances and increased risk of extinction for many species.

Climate change affects all aspects of ecosystems and is at least part of the story in many of this report’s key findings.

**Global Trends**

From 1906 to 2005, average global surface temperature rose by 0.74°C. The warming is widespread around the world, is greater in northern latitudes, and has been faster on land than in the oceans. Global average sea level has risen since 1961 at an average rate of 1.8 mm per year, increasing since 1993 to 3.1 mm per year.

Research provides us with understanding of how climate change affects ecosystems. Global climate models provide us with projections for future climates. Evidence of trends and abrupt changes, early warnings of deviations from established patterns, and local observations of ecological change, show us that impacts are happening now.
Climate trends for Canada, 1950 to 2007

Temperature

- Average annual air temperature increased by 1.4°C.
- Strongest warming (>2°C) was in the west and northwest.
- No significant cooling trend occurred at any location in any season.
- Largest temperature increases were in winter (>4°C at 26 locations).
- Warming was most prevalent in winter and spring, leading to widespread:
  - decrease in winter snowpack and earlier snowmelt;
  - earlier start to the growing season.
- Summer warming trends were mainly over southwestern and southeastern Canada.
- Smallest temperature change occurred in the fall.

Precipitation

- Annual precipitation generally increased, most strongly in the northern half of Canada.
- Precipitation increased over the Arctic in all seasons except summer.
- Winter precipitation decreased in southwestern and southeastern Canada.
- The fraction of precipitation falling as snow decreased in southern Canada.

Source: Zhang et al., 2010
Earlier springs lead to changes in timing of bird migration and nesting

The trend to earlier, warmer springs appears to be leading to earlier arrival at prairie nesting grounds for some waterfowl and earlier hatching for some seabirds.

**CANADA GEESE ARRIVAL DATES, DELTA MARSH**

1939 to 2001

Timing of annual arrival at Delta Marsh, along the shore of Lake Manitoba, was strongly related to the average March temperature for about half of the 96 migratory bird species studied, including Canada geese. Spring arrival dates of most of these species shifted earlier at rates of 0.6 to 2.6 days for each 1°C rise in average March temperature.6

**HATCHING DATES FOR TUFTED PUFFINS, TRIANGLE ISLAND**

1975 to 2002

Tufted puffins, rhinoceros auklets, and Cassin’s auklets at Triangle Island off the B.C. coast have shifted to an earlier breeding season in the past 30 years. The populations of these burrow-nesting seabirds declined from 1984 to 2004, likely due to changes in ocean conditions. The declines may be partly caused by a mismatch between timing of nest hatching and peak food availability, as has been confirmed for Cassin’s auklets.8

**MOVING NORTH**

There are many observations throughout the country of shifts in species ranges, generally northward. Many of these shifts are likely related to climate change. Some examples include:

- The northern limit of the breeding range of landbirds that breed in southern Canada moved northward by an average of 2.4 km per year from 1964 to 2002 – for example, Swainson’s thrush has extended its range 141 km northward over this period.9

- Declining sea ice in Arctic straits has led to killer whales expanding their range into Hudson Bay where they are now sighted every summer.10

- Northward range shifts have been noted since the 1960s in the Northwest Territories for white-tailed deer, coyote, wood bison, cougar, magpies, and the winter tick parasite.11, 12

- White-tailed deer have been expanding northward from B.C. to Yukon since 1974 and now range as far north as central Yukon.13 They have also been observed to be expanding northward in Saskatchewan, Quebec, and Ontario.14, 15

- The Inuvialuit of Banks Island in the Arctic have noted new species of beetles and sand flies. Robins and barn swallows are also new to the region.16

- Northward expansion of raccoons into the Prairies during the 20th century may be linked to longer growing seasons along with increased agricultural production.17
Warmer temperatures lead to changes in the tundra biome

Evidence from around the circumpolar Arctic indicates that tundra is changing.\textsuperscript{18, 19} Climate records show that the particular conditions of cold temperatures and low precipitation needed to support polar tundra, barrens, and ice and snow biomes declined about 20% in the past 25 years.\textsuperscript{20} This trend is linked with increases in primary productivity and increased biomass in tundra plant communities. This “greening” signal is particularly strong in the Canadian Western Arctic where there is evidence of shrub cover increasing in the forest-tundra and adjacent tundra. Studies based on satellite images from 1986 to 2005 along the treeline zone west of Hudson Bay show trends to increased shrubbiness, especially west of the Mackenzie Delta.\textsuperscript{21} In the delta, the combination of warming temperatures and increasing permafrost degradation is creating new growing conditions suitable for colonization by tall deciduous shrubs such as alder.\textsuperscript{21}

Several sites in Canada conduct research and monitoring on changes in tundra through the International Tundra Experiment (ITEX). Analysis of vegetation plots from ITEX sites around the circumpolar Arctic shows that, although changes vary from region to region, increases in vegetation canopy height and dominance of shrubs are common findings.\textsuperscript{22} The ITEX program also includes passive warming experiments using small, open-topped greenhouses (see photograph) which increase plant-level air temperature by 1 to 3°C. Analysis of 11 ITEX warming experiments from around the Arctic indicates that future trends in tundra are likely to include increases in canopy height, changes in species composition and abundance, and reduction in species diversity.\textsuperscript{23}

High Arctic tundra at the ITEX site on Ellesmere Island has become more productive, with biomass increasing by 50% over 13 years. This change was mainly due to an increase in growth of evergreen shrubs and moss. Because of the greater shrub growth, average canopy height increased, doubling from 17 to 34 cm between 2000 and 2007. Species diversity did not change.\textsuperscript{22}
KEY FINDING 15. Canada is well endowed with a natural environment that provides ecosystem services upon which our quality of life depends. In some areas where stressors have impaired ecosystem function, the cost of maintaining ecosystem services is high and deterioration in quantity, quality, and access to ecosystem services is evident.

Ecosystems provide the direct goods and indirect services that ensure human well-being. These are collectively referred to as ecosystem services. Ecosystem services include: regulating services, such as the mitigation of flood and drought, the filtration of air and water, and the control of pest populations; provisioning services, such as food, fibre, and water; cultural services, such as education, recreation, psychological health, and spiritual experience; and the supporting services necessary for the production of all other ecosystem services, such as soil formation and nutrient cycling.

Ecosystem services are important because they provide critical life support, they underpin our economy and quality of life, and the full suite of services cannot be duplicated with human-made alternatives.

Global Trends

Approximately 60% of ecosystem services globally are being degraded or used unsustainably, including 70% of provisioning services.

SOME OBSERVED TRENDS THAT AFFECT ECOSYSTEM SERVICES

Examples of changes in biomes, habitat, wildlife, and ecosystem processes presented in other key findings that affect ecosystem services, as viewed through the Millennium Ecosystem Assessment framework:

- changing availability and quality of traditional/country foods that can affect cultural traditions
- increasing stewardship initiatives on private lands
- increasing terrestrial protected areas
- little progress in marine protected areas
- decline in birds
- increasing frequency of algal blooms in many lakes
- fundamental changes in marine food webs
- greater primary productivity on land
- declining extent and condition of some forests, grasslands, and wetlands, affecting soils and nutrients
- melting ice and warming and thawing permafrost
- changes in nutrient loads
- changing climate
Provisioning services

A range of ecosystem characteristics and socio-economic factors impact the delivery and maintenance of ecosystem services. While changes in provisioning services are usually the most obvious, they often result from changes in regulating and supporting services and can be closely tied to changes in cultural services. Many ecosystem services are complementary, with changes in multiple services being driven by a common factor. The following examples illustrate some types of threats to the ongoing provision of ecosystem services in Canada.

DECLINING POPULATIONS DESPITE HUMAN INTERVENTION

Since 1971, hatchery-reared coho salmon have been released into the Strait of Georgia to supplement wild stocks. Declining marine production and survival, likely driven in part by changes in climate, combined with high exploitation rates, have led to severe overall coho population declines. While exploitation rates have decreased, populations have not recovered and overall abundance is still declining.

MARINE SURVIVAL AND EXPLOITATION OF COHO IN THE GEORGIA STRAIT, B.C.

Percent survival and percent adults caught (exploitation), 1986 to 2006

CONTRACTING RANGES AND SHRINKING POPULATIONS

The Fortymile caribou herd, once an important source of food and supplies for people in Yukon, declined from a population of 500,000 in the early 1900s to 7,000 in the late 1960s. Declines were likely the result of bad winters, overharvesting, and fragmentation of the landscape. The population has rebounded to 43,000 since the early 1980s, attributed mainly to harvest restrictions and a wolf control program. The range of the herd is now a fraction of its historical extent, with the caribou rarely crossing the border into Canada.
ECOSYSTEM SERVICES

CHANGING ENVIRONMENTAL CONDITIONS

Changing sea-ice conditions have significant impacts on northern communities that depend on ice for harvest activities. Residents of Igloolik Island, for example, are essentially cut off from their surroundings while the ice is forming, unable to travel to harvest sites located off the island. Freeze-up is starting significantly later in the year and it is taking longer for ice to fully form. Igloolik residents are highly dependent on subsistence harvesting but there are limited opportunities on the island. As a result, residents are taking increasing risks to harvest seals at ice edges and are travelling across unstable ice to harvest caribou on the mainland. Similar decreases in access related to ice conditions have been noted for the communities of Sachs Harbour, Ulukhaktok, and Churchill, though the impact on residents is community-dependent.

SEA ICE FREEZE-UP, IGLOOLIK, NUNAVUT
Date of freeze-up, 1969 to 2005

Changing sea-ice conditions have significant impacts on northern communities that depend on ice for harvest activities. Residents of Igloolik Island, for example, are essentially cut off from their surroundings while the ice is forming, unable to travel to harvest sites located off the island. Freezing conditions are starting significantly later in the year and it is taking longer for ice to fully form. Igloolik residents are highly dependent on subsistence harvesting but there are limited opportunities on the island. As a result, residents are taking increasing risks to harvest seals at ice edges and are travelling across unstable ice to harvest caribou on the mainland. Similar decreases in access related to ice conditions have been noted for the communities of Sachs Harbour, Ulukhaktok, and Churchill, though the impact on residents is community-dependent.

CHANGING WILDLIFE BEHAVIOUR

Despite increases in the population of Canada geese in the eastern Taiga Shield since the mid-1990s, the success of the goose harvest among James Bay Cree has declined. The Cree report that the geese fly higher and further inland and that the migration period is shorter in recent years. It is thought that these behavioural changes are caused by altered weather patterns, reduction of eelgrass meadows, and impacts from hydroelectric development. Changes in goose behaviour are compounded by changes in environmental conditions during harvest, particularly less predictable spring ice break-up patterns on the coast. These factors combine to reduce the number of suitable or accessible harvest sites. Traditional harvest is based on the systematic rotation and “resting” of a number of harvest sites grouped around a base camp. A decrease in harvest sites, as shown between 1979 and 2006, leads to increased pressure on the remaining sites, further contributing to the problem.

Other types of environmental change have also impaired access to provisioning services. For example, the development of the Lake Winnipeg Churchill-Nelson River diversion has reduced the ability of the Cree to navigate lakes and streams in order to harvest food and obtain supplies.

Source: adapted from Laidler et al., 2009

Source: 1979 map adapted from Scott, 1983 in Peloquin, 2007; 2006 map adapted from Peloquin, 2007
Valuation of ecosystem services

Failure to recognize the economic value of healthy ecosystems has contributed to the continuing decline of biodiversity worldwide.17 Duplication or replacement of ecosystem services with human-made alternatives is costly and can lack complementary services such as cultural value. Valuation of ecosystem services is a way to include biodiversity considerations in decision making about land use and economic activity and to measure the importance of biodiversity to people. The economic value of many provisioning services, such as the production of fish or timber, is often easily estimated because the products have well-defined prices. It is more complicated to place a value on non-market ecosystem services. A large-scale valuation study of ecosystems within the boreal region of Canada18 provides a framework for more detailed valuations in specific areas.

Valuation of the Beverly and Qamanirjuaq Caribou Herds

The relationship between people of northern Canada and caribou has developed over thousands of years and underpins many cultural values. People living in the range of the Beverly caribou herd, for example, have harvested caribou for approximately 8,000 years.19

An examination of the services provided by the Beverly and Qamanirjuaq caribou herds found that the value of harvest, including meat, hides, and antlers, is approximately $19.9 million per year.20 Previous studies in the region, augmented with questionnaires and interviews, concluded that traditional harvest of caribou and associated activities were viewed by people throughout the range of the two herds as integral to the maintenance and transfer of knowledge, skills, and culture. Many people interviewed talked about how important the caribou harvest was to their identity and to the revitalization of their communities.20

The ecosystem services that people of the North derive from caribou are threatened. The Beverly herd has declined severely since the last survey in 1994.21 As a result, people from northern Saskatchewan who traditionally harvest Beverly caribou have had to fly north or east for their harvest. These caribou may be from other declining herds, such as the Qamanirjuaq, Bathurst, or Ahiak.21, 22

ECOSYSTEM SERVICES OF ONTARIO’S GREENBELT

Ontario’s Greenbelt Act of 2005 protected 7,604 km² of land from further urban development in the Golden Horseshoe region of southern Ontario. This area supports a quarter of Canada’s population and is the fastest growing region in North America.23 The greenbelt is made up of green spaces, farmlands, communities, forests, wetlands, and watersheds, and includes habitat for more than a third of Ontario’s species at risk.23

The estimated total value of the area’s measurable non-market ecosystem services is approximately $2.6 billion annually.23 This estimate is likely low due to an incomplete understanding of all benefits provided by the greenbelt and the difficulty of assigning a value that represents and reflects the importance of the area to people. The value of the greenbelt is likely to increase with time as the ecosystems protected within it become increasingly rare.23

Source: adapted from the Friends of the Greenbelt Foundation, 2009

<table>
<thead>
<tr>
<th>Ecosystem Service</th>
<th>Annual value (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat</td>
<td>$548</td>
</tr>
<tr>
<td>Flood control (wetlands)</td>
<td>$380</td>
</tr>
<tr>
<td>Carbon storage and uptake</td>
<td>$377</td>
</tr>
<tr>
<td>Agricultural pollination</td>
<td>$298</td>
</tr>
<tr>
<td>Water runoff control by forests</td>
<td>$278</td>
</tr>
<tr>
<td>Water filtration</td>
<td>$131</td>
</tr>
<tr>
<td>Natural regeneration</td>
<td>$98</td>
</tr>
<tr>
<td>Recreation and aesthetics</td>
<td>$95</td>
</tr>
<tr>
<td>Cultural/spiritual</td>
<td>$66</td>
</tr>
<tr>
<td>Biological control</td>
<td>$8</td>
</tr>
<tr>
<td>Soil formation</td>
<td>$6</td>
</tr>
<tr>
<td>Nutrient cycling</td>
<td>$2</td>
</tr>
<tr>
<td>Erosion control</td>
<td>&lt;$1</td>
</tr>
</tbody>
</table>

Source: Wilson, 200822

<table>
<thead>
<tr>
<th>Ontario’s greenbelt</th>
<th>Source: Wilson, 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecosystem Service</td>
<td></td>
</tr>
<tr>
<td>Annual value (millions)</td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td>$548</td>
</tr>
<tr>
<td>Flood control (wetlands)</td>
<td>$380</td>
</tr>
<tr>
<td>Carbon storage and uptake</td>
<td>$377</td>
</tr>
<tr>
<td>Agricultural pollination</td>
<td>$298</td>
</tr>
<tr>
<td>Water runoff control by forests</td>
<td>$278</td>
</tr>
<tr>
<td>Water filtration</td>
<td>$131</td>
</tr>
<tr>
<td>Natural regeneration</td>
<td>$98</td>
</tr>
<tr>
<td>Recreation and aesthetics</td>
<td>$95</td>
</tr>
<tr>
<td>Cultural/spiritual</td>
<td>$66</td>
</tr>
<tr>
<td>Biological control</td>
<td>$8</td>
</tr>
<tr>
<td>Soil formation</td>
<td>$6</td>
</tr>
<tr>
<td>Nutrient cycling</td>
<td>$2</td>
</tr>
<tr>
<td>Erosion control</td>
<td>&lt;$1</td>
</tr>
</tbody>
</table>

Source: Wilson, 200822
KEY FINDINGS

16. **Agricultural landscapes as habitat**  The potential capacity of agricultural landscapes to support wildlife in Canada has declined over the past 20 years, largely due to the intensification of agriculture and loss of natural and semi-natural land cover.

17. **Species of special interest: economic, cultural, or ecological**  Many species of amphibians, fish, birds, and large mammals are of special economic, cultural, or ecological interest to Canadians. Some of these are declining in number and distribution, some are stable, and others are healthy or recovering.

18. **Primary productivity**  Primary productivity has increased on more than 20% of the vegetated land area of Canada over the past 20 years, as well as in some freshwater systems. The magnitude and timing of primary productivity are changing throughout the marine system.

19. **Natural disturbances**  The dynamics of natural disturbance regimes, such as fire and native insect outbreaks, are changing and this is reshaping the landscape. The direction and degree of change vary.

20. **Food webs**  Fundamental changes in relationships among species have been observed in marine, freshwater, and terrestrial environments. The loss or reduction of important components of food webs has greatly altered some ecosystems.
AGRICULTURAL LANDSCAPES AS HABITAT

KEY FINDING 16. The potential capacity of agricultural landscapes to support wildlife in Canada has declined over the past 20 years, largely due to the intensification of agriculture and the loss of natural and semi-natural land cover.

Land within the agricultural landscape of Canada includes a variety of cover types – pasture and rangeland, summerfallow, 24 types of cropland, and woodlots, wetlands, windbreaks, and other non-farmed areas. Agricultural landscapes are important to biodiversity because they cover about 7% of Canada and provide habitat for over 550 species of terrestrial vertebrates, including approximately half of those assessed in 2004 as at risk nationally. Agricultural landscapes are concentrated in southern Canada, where biodiversity and numbers of species at risk are high and where ecosystem conversion is more extensive.

Wildlife Habitat Capacity Indicator

The capacity of agricultural landscapes to provide habitat for wildlife depends upon the mosaic of land-cover types and their management. One way to measure the potential of these lands to support populations of terrestrial vertebrates is through Agriculture and Agri-Food Canada’s Wildlife Habitat Capacity on Agricultural Land Indicator. The indicator ranks potential wildlife habitat capacity for 15 habitat categories based on an assessment of the use and value of 31 land-cover types to 588 species of birds, mammals, reptiles, and amphibians. Results show that natural areas and unimproved pasture provide the highest values, while cultivated lands, in particular croplands, provide the lowest. Natural lands, including woodlands, wetlands, and riparian areas, can provide all breeding and feeding habitat requirements for 75% of the species assessed, whereas croplands can only provide requirements for 13%.

In 2006, the average potential ability of the agricultural landscape to support wildlife was lowest in the Prairies, Boreal Plains, and Mixedwood Plains ecozones*, which together make up 92% of the agricultural landscape in Canada. Trends for individual parcels of land are variable and depend upon changes in their particular use. Although individual parcels, particularly pasture, provide critical wildlife habitat, the dominance of cropland results in a low overall capacity for much of these ecozones*. The ecozones* where the agricultural footprint was lighter and the dominant land cover within the agricultural landscape was natural (Atlantic Maritime and Boreal Shield) or unimproved pasture (Montane Cordillera, Western Interior Basin, and Pacific Maritime) had the highest wildlife capacity.

Source: adapted from Javorek and Grant, 2010

Status and Trends

agricultural landscapes remain important as habitat but show signs of stress
only one indicator, but trend from indicator is clear
Intensification of agriculture in the Prairies over the last 40 years, including the decline of fallow land in summer and increased conversion to cropland, has impacted nest success of some species of breeding waterfowl. For example, a primary cause of the decline of northern pintail is their tendency to nest in standing stubble, mulched stubble, or fallow fields early in the season, often prior to seeding. The reduction of summerfallow and increase of spring-seeding since the 1970s has been linked to reduced nest success and a decline in the Prairie northern pintail population.

Farmers have been working with conservation agencies to reduce the impact of agricultural practices on waterfowl. The planting of winter wheat in the fall in a zero-till seeding practice eliminates the need for spring tillage, thereby reducing disruption to nesting ducks. Application of these practices has increased since the early 1990s (see Stewardship).

**Trends**

Average wildlife habitat capacity, considering both declines in capacity of some individual parcels and increases in others, declined significantly between 1986 and 2006 in all ecozones except the Prairies, where it remained low. Conversion of small habitat parcels, such as on field margins in the Prairies, are not always detected at this broad scale and could represent further degradation of habitat capacity. Overall declines in Canada are due primarily to the intensification of farming and the conversion of natural lands to other land-cover types, such as cropland, that are less suitable to wildlife. From 1986 to 2006, the proportion of agricultural land classified as cropland increased from 46 to 53%.

Management practices also influence the ability of the land to support wildlife and sound stewardship through best management practices has had positive results in some regions. The dynamic nature of agricultural landscapes results in beneficial and detrimental land-cover changes happening concurrently.
KEY FINDING 17. Many species of amphibians, fish, birds, and large mammals are of special economic, cultural, or ecological interest to Canadians. Some of these are declining in number and distribution, some are stable, and others are healthy or recovering.

**Species of special interest are** those with particular relevance to Canadians because of their special economic, cultural, or ecological importance in addition to their biodiversity value. Some groups of species, for example fishes, are important because the economy of a region depends upon them. Others, like caribou, have widespread cultural significance.

**These species are important** because population declines often mean a loss of traditional lifestyles or a decline in economic sustainability. Species of special ecological importance play critical roles in shaping the ecosystems in which they live or provide early warnings of ecosystem stress.

This key finding provides a brief overview of wildlife status in Canada and then focuses on amphibians, fishes using freshwater, birds, and caribou. More information on status of wildlife in Canada can be found in a complementary Canadian Biodiversity report, *Wild Species 2010: the General Status of Species in Canada.* More information on species at risk in Canada is provided by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) on the Species at Risk Public Registry, and through provincial and territorial status committees.

Canada is home to over 70,000 wild species. The risk of endangerment has been determined for 10,332 of these species, 8,613 of which are native. Seventy-seven percent of assessed native species were considered secure in 2010 and 12% were classified as At Risk or May be at Risk. Reptiles, freshwater mussels, and amphibians have the greatest percent of species at risk at 43, 24, and 20% respectively. In addition to these 8,613 species, Canada has assessed 5 Extinct, 35 Extirpated, and 1,426 non-native species, and 253 species outside their usual ranges. The major threats to Canadian wildlife are habitat loss, fragmentation and degradation, pollution and contamination, overexploitation, invasive species, disease, by-catch, and climate change.
Global Trends

As of 2004, 43% of amphibian populations were in decline and 33% of all amphibian species were globally threatened. The dominant causes of declines worldwide are habitat reduction (North America and Europe), over-exploitation (Asia), and unexplained causes, possibly linked to disease (South America, Australia, and New Zealand). 9

In the Great Lakes Basin, four amphibian species, American toad, western chorus frog, northern leopard frog, and green frog, may have declined since the mid-1990s. Spring peeper is the only species out of eight monitored that has been increasing. However, the timeline is too short to be certain that these are long-term trends and not part of natural variation. 1 In the St. Lawrence River, 27% of amphibians and reptiles are at risk within the highly developed river corridor. 2 The northern leopard frog is considered Threatened in Alberta, red-listed in B.C., and assessed as Endangered (Rocky Mountain population), Special Concern (Western Boreal/Prairie populations) or Not At Risk (Manitoba and eastern populations) by COSEWIC. 3

Batrachochytrium dendrobatidis (Bd), a chytrid fungus of the skin, has been implicated in worldwide amphibian declines 4 (see Invasive Non-native Species). Ranaviruses have also been responsible for mass die-offs of amphibians worldwide. 5 Canada’s Boreal Shield, 6 Prairies, 7 and Mixedwood Plains 6, 8 ecozones 4 have documented cases of ranaviruses.

AMPHIBIANS

Amphibians are an integral part of aquatic food webs, feeding on algae and insects at different life stages and serving as food for a wide range of predators, including dragonflies, fish, snakes, and birds. They are particularly sensitive to pollutants absorbed through their skin, which makes them good indicators of wetland contamination and degradation. 1

AMPHIBIANS IN THE GREAT LAKES BASIN

Annual occurrence index (percent of monitoring stations where the species was recorded) 1995 to 2007

Source: Archer et al., 2009

Photos: dreamstime.com: American toad, Spring peeper, Wood frog, and Green frog; and iStock.com: Western chorus frog, Northern leopard frog, Bullfrog, and Gray treefrog
SPECIES OF SPECIAL INTEREST

FISHES USING FRESHWATER HABITAT

Fishes occur in almost all aquatic habitats and represent the largest group of vertebrates in the world. Although freshwater is relatively scarce globally, covering only 1% of the Earth’s surface, about 43% of the 29,000 to 32,000 fish species live in freshwater for at least part of their lives. With over 8,500 rivers and two million lakes, covering almost 9% of the total land area, Canada has a disproportionate amount of the global freshwater habitat, but only about 200 species of native freshwater and diadromous fish. (Diadromous fishes use both marine and freshwater.)

Fishes are among the world’s most important natural resources, providing numerous goods and services, including an annual global harvest of 92 million tonnes; 10.1 million tonnes from inland waters, most of which is freshwater. The commercial freshwater harvest in Canada is over 32,000 tonnes and valued at almost $68 million.

Native freshwater and diadromous fishes at risk

The Committee on the Status of Endangered Wildlife in Canada (COSEWIC) has assessed 18% (35 species) of freshwater and diadromous fishes as Endangered or Threatened throughout all or parts of their ranges. Fifty-eight species (29%) have been assessed as at risk, which includes species assessed as Extirpated and of Special Concern, as well as those that are Endangered or Threatened. The number of fishes at risk has been growing since the 1980s. The leading causes of declines in Canadian freshwater fishes are habitat loss and habitat fragmentation – caused by dams, weirs, roads and degradation of the riparian zone – and non-native aquatic species. Overfishing, pollution, climate change, and interactions between wild and farmed species are also linked to declining populations of freshwater fishes.

STURGEON, SPECIES AT RISK

All 24 species of sturgeon in the world are at risk, although definitions of “at risk” vary. Two of the five species in Canada are classified as Endangered or Threatened. White sturgeon, the largest freshwater fish in Canada, is restricted to the west coast of North America. Its size (up to 6 metres), longevity (over 100 years), and late maturity (14 to 30 years), make it especially vulnerable to overexploitation and habitat degradation. Of the six B.C. white sturgeon populations, three are declining (Columbia, Kootenay, Nechako), one is now more stable, with some fluctuations (lower Fraser), and two are stable (mid and upper Fraser). Poor juvenile survival, linked to river diversions, changes in sediment quantity and quality, and water flow regulation, associated with dams, are the primary reasons for endangerment of the three declining populations.

WHITE STURGEON, NECHAKO RIVER POPULATIONS

Lake sturgeon once sustained large commercial fisheries. Reductions of 50 to 98% have been observed in western Canadian rivers and lake sturgeon have disappeared from the Red-Assiniboine River and Lake Winnipeg. Great Lakes populations have been reduced to a fraction of their original size, and populations in the Ottawa and St. Lawrence rivers are showing recent declines. Before the turn of the century, overfishing was the main threat to lake sturgeon. In recent years, declines are attributed to habitat fragmentation and degradation in the Great Lakes, as well as overfishing, dams, contaminants, and invasive species elsewhere.

Global Trends

An estimated 37% of the world’s freshwater fishes are threatened with extinction.
Salmon

Canadian lakes and rivers provide spawning habitat for five species of wild salmon on the West Coast and one on the East Coast. Wild salmon are a staple and a cultural foundation species for Aboriginal Peoples. They are the basis of commercial, recreational, and Aboriginal food, social, and ceremonial fisheries on both coasts. Wild salmon are revered by Canadians, in part because of the mystique of their life cycle – after growing in the ocean they migrate long distances to spawn in freshwater.

Returns of Atlantic salmon to many rivers in North America have declined since the 1980s or 1990s, with northern populations increasing and southern populations remaining at low levels. For example, in inner Bay of Fundy rivers, runs of 30 to 40 thousand fish in the mid-1980s have been reduced to a few hundred fish, and in southern Nova Scotia, most salmon exist only as remnant populations or have been extirpated. Although the factors contributing to low marine survival are largely unknown, freshwater declines are a result of the effects of dams, loss of spawning habitat, invasive species, increases in stream temperatures, siltation, contaminants, poaching and, in southern Nova Scotia, acid deposition.

The Fraser River is legendary for its sockeye salmon runs. Since the 1990s, the number of returning sockeye has fluctuated widely, depending on the cohort (see graphs for the four cohorts above), while the survival rate – the proportion of fish that grow to adults and return to spawn – has been declining. In 2009, only 1.5 million adult sockeye returned – the lowest number since 1947. A scientific panel investigating the evidence for declining adult returns concluded that the major cause has been unfavourable physical and biological conditions in the Strait of Georgia, combined with freshwater and marine pathogens. In 2010, mid-summer estimates predicted the largest Fraser River sockeye run since 1913. In some years, warming water and reduced flows due to climate change have impacted salmon migration, spawning, and rearing success. Sockeye survival and spawning are impaired as river temperatures increase above stock-specific thresholds. Since the 1950s, mean summer temperatures in the Fraser River have increased by approximately 1.5°C. This trend is likely to continue, increasing the probability of sockeye being exposed to water temperatures that will impair their survival.
**SPECIES OF SPECIAL INTEREST**

**AMERICAN EEL**

The American eel is an example of a once abundant species that is now listed as Special Concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Since the 1970s, populations have declined by 99% in the upper St. Lawrence and less extreme declines have been observed in both the lower St. Lawrence and Gulf of St. Lawrence. The long life span of American eels, combined with their vast migration distances of up to 4,500 km, make them vulnerable to a wide range of stressors, such as mortality in hydroelectric turbines, physical barriers such as dams, overharvesting, and habitat alteration. Climate change, resulting in changes to ocean currents that carry eel larvae from the spawning grounds, may also contribute to population declines. American eels once provided both subsistence and commercial fisheries in Canada.

**AMERICAN EEL IN ONTARIO**

Average number (thousands) of eels per day at R.H. Saunders Hydroelectric Dam, 1974 to 2005.

![Graph showing American eel population trends in Ontario](image)

Note: no data are available for 1996.

Source: Ontario Ministry of Natural Resources, 2010

**PREY FISHES IN THE GREAT LAKES**

Trends in prey fish biomass based on annual bottom trawl surveys.

![Graph showing prey fish biomass in the Great Lakes](image)

The term prey fish refers to fish species that are the main food items of popular commercial and sport fish. A fish is considered a prey fish if it remains small in size, usually feeds on zooplankton or bottom-dwelling species, and is abundant enough to feed a predator fish population. Prey fish make up the majority of fish biomass and are the foundation of the Great Lakes fishery (see next page), as they are eaten by predatory fish such as trout, walleye, and bass. Prey fish include native species such as slimy sculpin, trout-perch, cisco, and bloater; and also non-native species such as alewife, rainbow smelt, and round goby. Declines in prey fish populations have been occurring since the 1980s and 1990s. The most likely causes are: stocking of Pacific salmon, which was done to reduce non-native prey fish; reductions in nutrients; and non-native zebra and quagga mussels, which filter nutrients from the water column and reduce food for the invertebrates that prey fish eat.
COMMERCIAL FISHING

Lakes and rivers in Canada support significant commercial fisheries. Lake Winnipeg supports the largest commercial fishery in Manitoba, valued at approximately $20 million per year. Commercial fish production has been highly variable in Lake Winnipeg over the past 125 years, both in the amount of fish and the species harvested. For example, a dramatic decline in fish production from 1940 to the 1960s was followed by an increase since the 1970s. Walleye production is now at historical highs and is the most important fishery species. Sauger, on the other hand, have been declining since the 1970s. Walleye are benefitting from the invasion of rainbow smelt and nutrient enrichment. These same factors are believed to be driving the decline in sauger.  

COMMERCIAL FISH PRODUCTION IN LAKE WINNIPEG

Tonnes (thousands), 1883 to 2006

The Great Lakes commercial fishery has an annual dockside value, in Ontario, that fluctuated between $29 and $37.5 million between 2004 and 2008, contributing $850 million per year in direct and indirect benefits to the Ontario economy. The overall commercial harvest has been declining since the 1980s. The main species harvested today are walleye and yellow perch, both native species, and rainbow smelt, a non-native species. Overfishing and predation by the non-native sea lamprey led to the collapse of lake trout in the late 1950s. Restoration, including stocking, has maintained a fishery, and lake trout are now reproducing in Lake Superior and Lake Huron. 

RECREATIONAL FRESHWATER FISHING

Number of fish (millions), 1995 to 2005

Approximately 3.2 million people participated in freshwater recreational fishing, or angling, in 2005, down from 4.2 million in 1995. The reduction in number of anglers has resulted in a reduction in the number of fish caught and the number of fish retained. It has also had an economic impact. Direct expenditures on angling were about $2.5 billion in 1995, 2000, and 2005. Although the dollar value of expenditures has not changed, this represents a 19% decrease in expenditures over 10 years, when adjusted for inflation. Anglers concentrate on some of the same species as the commercial fishery, namely walleye and yellow perch, although other species, such as brook trout, rainbow trout, bass, and northern pike, are also important. In 2000, the Year of the Volunteer, Canadian anglers dedicated over a million days to habitat clean-up and other activities related to improving recreational fishing.
SPECIES OF SPECIAL INTEREST

BIRDS

*Birds are* widespread, readily observed, feed at many levels of the food web, and are responsive to environmental change, making them good indicators of ecosystem health. *Birds play an important* ecological role, providing food for other species, dispersing seeds, controlling insects, pollinating plants, and modifying habitat. Many also have economic and cultural significance — providing humans with food, recreation, enjoyment, and study and playing an important role in many cultures.

Over the past 20 years, the status of the world’s birds has deteriorated, with more species moving closer to extinction.1 Of particular concern are declines in formerly common species.1 In the last 40 years, 20 common North American bird species lost over 50% of their populations.1, 2 Birds are also shifting their ranges northward in response to climate change — nearly 60% of the 305 species found in North America in winter moved northward by an average of 1.4 km per year (56 km over the last 40 years)3 and breeding ranges of southern North American species have shifted north by an average of 2.4 km per year.4

Canada provides crucial breeding, migrating, and wintering habitat for a significant percentage of the world populations of many species. Nevertheless, the status and trends of birds in Canada are only partially understood. Good data exist for many species, particularly in southern Canada; however, only localized data exist for many others, particularly in the North.

SHOREBIRDS

Sixty percent of North American shorebirds breed in the Arctic, with the Canadian Arctic providing 75% of the breeding range for 15 of 49 common species.5 Canada has migration sites of great importance as well, including at least three of hemispheric significance — the Bay of Fundy, the Fraser River estuary, and Chaplin/Old Wives/Reed Lakes in Saskatchewan.6 Some southern breeding areas, for example the Prairies, are of global importance to some species.7

Data on shorebird populations are patchy in Canada, but most information indicates declining trends.7-9 Of the 35 species examined in 2000, 49% showed significant declines somewhere in their range.5 The most complete datasets in Canada include the Breeding Bird Survey and the Atlantic Canada Shorebird Survey. Results from these surveys indicate:

- Between 1976 and 2007, 4 of 12 species (33%) of shorebirds breeding in southern Canada declined significantly. There were no significant increases.10
- Between 1974 and 2006, 5 of 15 migrating shorebird species (33%) on the Atlantic coast showed significant declines.11, 12

Potential causes of declines of shorebirds include loss and degradation of habitat, climate change, changes in predator regimes (for example, increasing numbers of peregrine falcons may cause shorebirds to move through an area more quickly, leading to an apparent decline13), human disturbance, contaminants, and disease.5 Changes are expected to accelerate due to anticipated changes in Arctic breeding habitat,14 as well as flooding and droughts elsewhere in shorebird ranges7 as a result of climate change.

Global Trends

Globally, over 150 species of birds have been lost since the 16th century and one in eight is currently threatened with extinction. The last 20 years have witnessed a steady decline of bird species in terrestrial, freshwater, and marine ecosystems. Between 1988 and 2008, the status of 225 bird species was elevated to a higher level of risk.1
Worldwide, the status of seabirds is deteriorating faster than any other bird group. In Canada, trends are regional in nature and result from a variety of factors, including climate change, fishing by-catch, resource extraction, transportation, and pollution. A trend to an earlier breeding date has been found in several populations, as have changes in diet and condition.

- **Pacific** – southern populations, influenced by the changes in sea surface temperature related to the upwellings of the California Current, have been declining since the 1970s. Declines may also be due in part to a mismatch in timing between breeding and peak of food availability. Populations north of the influence of the current, however, have generally increased since the 1980s.

- **Atlantic** – prior to 1990, populations generally showed positive trends. A major cold-water event in 1990, however, coinciding with overfishing, disrupted food webs, resulting in immediate changes in diet, condition, and population, particularly for gulls. Populations of most diving seabirds increased over this period, in part due to closure of the gill-net fishery that had been drowning many birds.

- **Arctic** – with the exception of ivory gulls, which are declining rapidly, change in Arctic seabird populations is slow and possibly the result of events on wintering grounds in the Northwest Atlantic. Changes in seabird diet and growth have been found to be related to reduction of Hudson Bay sea ice. This may have negative consequences for populations in the long term. Conversely, in the High Arctic, less sea ice may benefit the birds.

### Trends in Status of Breeding Seabird Populations in Canada

<table>
<thead>
<tr>
<th>Year</th>
<th>Increasing</th>
<th>Stable</th>
<th>Decreasing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980s</td>
<td>12</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1990s</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>2000s</td>
<td>6</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: only populations with significant breeding populations, long-term datasets, and those unaffected by terrestrial human activities are included. Source: adapted from Gaston et al., 2009.
SPECIES OF SPECIAL INTEREST

Populations of landbirds in all habitat types except forest declined significantly from 1968 to 2006. No significant positive trends in any landbird groupings (by habitat, by foraging, or by migration strategy) were evident between 1968 and 2006, although significant positive trends were found for some individual species.

- **Grassland** birds, with more than 40% loss of total population since the 1970s, show significant steep declines in all regions of the country and for most species. This is consistent with declines throughout North America and is thought to be due to a combination of habitat loss and the intensification of agriculture.

- **Birds of other open habitats** have been declining since the late 1980s. The assemblage contains several species of aerial-foraging insectivores, many of which are showing declines.

- **The urban group** is heavily influenced by two introduced species, European starling and house sparrow, which, although still abundant, are showing declines in Canada and Europe.

- **The decline in shrub/early succession birds** is strongly influenced by declines in relatively abundant sparrows. Significant declines were found in the Atlantic Maritime, Boreal Plains, and Boreal Shield ecozones.

- **Aerial and ground-foraging birds** show significant declines of 35 and 27% respectively since the 1970s. **Aerial-foraging insectivores**, such as swallows and flycatchers, stand out as a group showing large declines. Causes remain unknown but likely include changes in food, climate, and habitat.

- **Long-distance and short-distance migrants** showed significant declines of 21 and 24% respectively, while **resident birds** were unchanged. Short-distance migrants include many grassland species. Long-distance migrants include many aerial-foraging insectivores. Loss and fragmentation of habitat on the wintering grounds is one possible cause for decline.
WATERFOWL

Waterfowl have been monitored cooperatively by Canada and the U.S. since 1948. Concern over declines in populations in the 1980s led to the development of a large international cooperative initiative, the North American Waterfowl Management Plan, to address the declines. Although many duck populations fluctuate widely among years and regions, overall trends for most inland breeding ducks show increases or no significant change between 1961 and 2009.43, 44 Nevertheless, the populations of some species remain low; for example, northern pintail, American wigeon, and greater and lesser scaup have declined significantly in the prairie and western boreal regions.43, 44

AMERICAN BLACK DUCK

Over 90% of the world population of American black ducks breed in eastern Canada48 and the population declined by almost 50% between 1955 and 1985.49 One of the most abundant ducks in eastern Canada, the population has been stable at about 450,000 since 1990, although declines continue in the Mixedwood Plains.43, 44 Causes for the decline are not clear but likely include habitat loss due to development and agriculture49, 50 and displacement through competition with mallards,51 which have been expanding in abundance and range.49, 50, 52 Population increases in other areas could be due to changes in management practices, such as increased hunting restrictions.53

SEA DUCKS

Data for sea ducks are limited because most breed in remote, inaccessible areas in the North.43 Existing data show a mix of trends. Reasons for declines are largely unknown,43 but declines in eiders may be related to harvest and avian cholera may be an issue.54

† mergansers in prairie, boreal, and Atlantic regions
† common goldeneye in prairie and Atlantic regions
† bufflehead in prairie and boreal regions
↓ scoters in prairie and boreal; † surf scoters in Atlantic43 regions
↓ long-tailed duck in boreal regions
↓ Arctic breeding populations of eiders54-58
CARIBOU

Caribou are distributed across most of Canada and can play important ecological roles as herbivores influencing the structure of plant communities, as prey supporting populations of large and medium-sized predators and scavengers, and as a source of nutrients in otherwise nutrient-limited systems. Caribou are an integral part of many cultures, particularly Aboriginal cultures, which have developed with caribou over thousands of years.1

Caribou of the Arctic and taiga

Abundance of northern caribou, like other northern herbivores, such as lemmings and hares, is cyclic. Caribou numbers generally increased from lows in the mid-1970s to peaks in the mid-1990s, returning to lows by 2009 that are, in some cases, similar to previous lows.2 Some herds, notably the Bathurst and Beverly, which calve in the central Arctic, have experienced severe drops in the past few years.3 4 Current declining trends may be partly related to natural cycles in abundance.2

Abundance of Peary caribou, which live on the High Arctic islands and are listed as Endangered by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC),5 is largely influenced by weather. Periodic severe winters trigger large-scale mortality and reduction in productivity.5 Populations have declined by as much as 98% on several islands.6 7 During two winters in the 1990s, more than 95% of the Peary caribou population in the western half of its range was devastated by heavy snow and the formation of ice layers in the snow.5 Events like these are projected to become more frequent and more widely distributed with climate change.6 8 9

Significant changes on caribou ranges since the 1970s could prevent a recovery of some herds to previous peak numbers.10 These changes include the effects of climate change, including changes in wildfire,11 and an increasing presence of people and development, particularly mining and oil and gas activity.12 14 Caribou harvest by humans and predation are also known to affect abundance within some caribou herds.5
Forest-dwelling woodland caribou are relatively non-migratory and live in smaller groups than their northern counterparts. They divide their time between lichen-rich mature forest and open areas, including alpine tundra. Historically occurring over much of Canada, their distribution has retracted, with the southern boundary continuing to move northward. Caribou had completely disappeared from Nova Scotia and New Brunswick by 1930.

The status of many herds remains unknown; however, where data exist, declines are evident, particularly for the boreal and southern mountain populations. Woodland caribou are declining primarily because of loss and degradation of habitat and landscape fragmentation due to roads and other linear features. This is resulting in the isolation of populations and increasing vulnerability to predators. Overharvest of the caribou, fire, and climate change are also considered factors in population decline. Generally, populations that are stable or increasing occur in remote areas with little or no industrial activity or where predator control has been used as a management tool.

Global Trends

Caribou and reindeer have a circumpolar distribution in the world's tundra and boreal zones. Wild populations have declined in Russia and are mostly extirpated from Europe, except for a small, stable reindeer population in Norway, and an increasing population in Finland. Loss of habitat and climate change are threats worldwide.
KEY FINDING 18. Primary productivity has increased on more than 20% of the vegetated land area of Canada over the past 20 years, as well as in some freshwater systems. The magnitude and timing of primary productivity are changing throughout the marine system.

Primary productivity is the conversion of the sun’s energy into organic material through photosynthesis. On land, it is driven by temperature and availability of water and nutrients modified by land use. In aquatic ecosystems, primary productivity is driven by the availability of nutrients and light and, to a lesser extent, by temperature and other factors. Primary productivity is important because it is the process that forms the foundation of food webs in most ecosystems.

Primary productivity increased significantly on 22% of Canada’s vegetated land area between 1985 and 2006 and decreased on less than 1% of land. This trend in primary productivity is based on changes in the normalized-difference vegetation index (NDVI), a remote-sensing based measurement of photosynthetic activity – it is a good indicator of the amount of healthy green vegetation.

The largest increases in primary productivity were found in the North where temperatures have risen the most. Changes in vegetation that correspond with this “greening” in northern Canada include a transition to shrubs and grasses where lichens and mosses once dominated and changes in tree growth and density at mountain and northern treelines.

In southern Canada, increases in primary productivity are likely more strongly related to changes in land use than they are to climate change. For example, increases in primary productivity in the Prairies are related to increases in crop area. The small decreases in primary productivity seen in some areas may be associated with urban and industrial development, or, as in interior British Columbia, forest insect infestations. Some increases in primary productivity may also be associated with fire, as burns can have positive or negative NDVI trends, depending on the age of the burn.

Global Trends

Photosynthetic activity was estimated to have increased on about 25% of the Earth’s vegetated area and decreased over 7% of this area from 1982 to 1999. The greatest increases were in the tropics, as a result of fewer clouds and increased exposure to the sun, and in high latitudes of the Northern Hemisphere, attributed to increased temperature and water availability.

Note: trends shown are statistically significant.
Source: Ahern et al., 2010; adapted from Pouliot et al., 2009
Satellite measurements of ocean colour have shown variable decade-scale trends in marine primary production, including a short-term increase in primary production in the Arctic Ocean from 1998 to 2008. A recent study extended the record by also using longer-term measurements of water transparency and chlorophyll concentrations. This study concluded that, over the past 110 years, primary production has declined in most of the world’s ocean regions. High-latitude regions, including the North Pacific, showed the greatest long-term declines. The global decline in the amount of phytoplankton is estimated at 1% per year, with a total decline of 40% since 1950. Shorter-term trends were related to climate oscillations, while the long-term declines were most strongly related to increasing sea-surface temperatures – which leads to less mixing of ocean waters, reducing the nutrient supply for phytoplankton. The exceptions are the Arctic and Antarctic oceans, where the causes of the observed long-term decreases in primary production are less clear, but may be related to increased wind intensity.

The figure shows chlorophyll reconstructions from Lost Pack Lake, one of six Baffin Island lakes examined for long-term trends. All lakes show dramatic increases of inferred primary production within the most recently deposited sediment, following prolonged periods of comparatively low values. Dating of the sediment cores indicates that these rapid increases started in the late 19th century and continue to the present. The increases are a departure, in most lakes, from relatively stable levels of primary production that persisted for millennia. A widespread increase in freshwater production over much of northern Canada is also inferred from major shifts in species composition of algae in ponds and small lakes in many areas (also detected from studies of sediment cores).

The best explanation for this change in algae is climatic warming leading to longer ice-free growing seasons and associated changes in lake ecosystems. The changes are most pronounced in the High Arctic, but similar shifts in algal species are found in many locations in the Northern Hemisphere – with changes being more recent in temperate latitudes.
KEY FINDING 19. The dynamics of natural disturbance regimes, such as fire and native insect outbreaks, are changing and this is reshaping the landscape. The direction and degree of change vary.

Natural disturbances are discrete, sometimes cyclical, events that cause significant change in ecosystem structure or composition. Size, frequency, severity, seasonality, and duration of the disturbance event determine the impact on biodiversity. Large disturbance regimes are important as they have shaped ecosystems. Although other disturbance agents are important, this key finding focuses on fire and native insect outbreaks which are widespread and particularly important ecological drivers in forests and grasslands. Fire and insect outbreaks affect each other and are influenced by weather, climate, vegetation dynamics, and human management.

FIRE

Fire plays an essential role in ecosystems, cycling nutrients, influencing species composition and age structure, maintaining productivity and habitat diversity, influencing insects and disease, and influencing the carbon flux. Due to the ecological influence of fire, patterns of past fires have shaped the forest of today. Changes in fire dynamics affect fire patterns (size, frequency, seasonality, severity, or type) and can result in significant changes to ecosystems.

Large fires (greater than 2 km²) make up only 3% of all fires but account for 97% of the total area burned. Over 90% of large fires occur in the boreal forest, where extreme fire weather conditions are common and suppression efforts are lower. Fire occurrence varies across years and across regions and is influenced by weather, climate, fuels, topography, and humans. Between 1959 and 2009, the total annual area burned ranged from 1,500 km² to 75,000 km².

Although a long-term decline in frequency and area burned by large fires is evident since the 1850s, particularly in eastern Canada, annual area burned increased overall from the 1960s to 1980s/1990s. This has been attributed to greater forest use by humans, better fire detection, and increased temperatures over the last 40 years. The short-term decline from 2000 to 2009 may be the result of other climatic factors such as large-scale ocean circulation patterns from the North Pacific Ocean which entered a cool phase in the mid-1990s. Fire activity is most strongly linked to temperature and as temperature increases, so should fire activity.

Source: adapted from Krezek-Hanes et al., 2010
Data for 1959 to 1994 from Large Fire Database, in Stokes et al., 2003, and for 1995 to 2009 from the Canada Centre for Remote Sensing.
**Seasonality**

The fire season runs from April to mid-October. The time of year that fires occur can affect forest regeneration capacity and intensity. Humans cause approximately 65% of fires (large and small) in Canada; however, with most fires being smaller than 2 km, human-caused fires represented only 15% of the total area burned from 1959 to 1997. These fires occurred mainly in the spring and close to human settlements. The majority of boreal and taiga fires are caused by lightning and tend to occur later in the fire season. These are often more severe because the fuel is dry, producing fires of great severity and intensity, and they are less likely to be suppressed. Evidence from other countries, such as the western United States, indicates a lengthened fire season with wildfires starting earlier in the spring. This is thought to be occurring in Canada as well.

**LOSS OF FIRE AS A DISTURBANCE AGENT**

Over the last century humans have had a significant influence on fire. Land conversion and fire suppression have resulted in the almost complete loss of large fire as an important disturbance agent in the Mixedwood Plains, Prairies, and Atlantic Maritime ecozones. The success of fire suppression since the 1970s has also affected other areas. For example, in the B.C. interior it has led to in-filling of grasslands and ponderosa pine forests with Douglas-fir and other trees and shrubs and increased the amount of fuel, making the forests more susceptible to fires of greater intensity and increasing their vulnerability to insect outbreaks. Active suppression now covers 90% of the Boreal Plains, 64% of the Boreal Shield, 41% of the Boreal Cordillera, 20% of the Taiga Plains, and 2% of the Taiga Shield. The negative ecological consequences of fire suppression have been recognized and management authorities have started to reintroduce controlled burns on a limited basis in parts of Canada. Fire suppression is a balancing act between maintaining ecological function and protecting human life and property.

**Global Trends**

Globally, the total area burned annually has been increasing since the 1950s. Both fire weather severity and area burned are expected to continue to increase in Europe, Russia, Canada and the United States, South America, central Asia, southern Africa, and Australia due to increasing temperatures.
INSECTS

Large-scale insect outbreaks are an important natural disturbance regime in Canada. Changes in patterns of outbreaks of some insect species are evident but they are not uniform, with some increasing in severity, some decreasing, some showing no sign of change, and many without long-term data. Insect outbreaks and fire each affect the other and both are influenced by climate. For example, the suppression of wildfire has caused changes in forest structure in some areas, increasing their susceptibility to outbreaks of some insects. At the same time, insect outbreaks can influence fire dynamics, for example, increasing wildfire intensity in post-outbreak stands.

The spruce budworm, native to Canada’s boreal and mixedwood forests, is one of Canada’s most prevalent and influential insect defoliators. Of the four species that occur in Canada, the most widespread is the eastern spruce budworm. Its preferred hosts are balsam fir and white and red spruce, but it can also defoliate black spruce. It is most damaging to older, denser forest stands although during severe outbreaks all host stands are vulnerable. Together with fire, the eastern spruce budworm is the dominant natural disturbance in the boreal forest. Cycles of spruce-budworm outbreaks, recurring approximately every 30 to 55 years, influence species composition, age-class distribution, successional dynamics, and forest condition, thereby playing an important role in shaping forest ecosystems. Outbreaks occur somewhat synchronously over extensive areas, but outbreak duration varies regionally. The last peak outbreak was in 1975, when over 510,000 km² were defoliated nationally.

Western spruce budworm affects a much smaller area. The last peak defoliation was in 2007, when about 8,600 km² were defoliated nationally. Severity of attack is low, for example, 95% of affected area in B.C. was classified as light in 2008. One study mapped historical attack in the Kamloops Forest Region and found an increase in attack over the four outbreaks between 1916 and 2003, particularly after 1980.

There is no consensus on whether there has been a change in frequency of eastern spruce budworm outbreaks. An overall increase in the area it has defoliated is apparent for Ontario and Quebec, however, which represented 98% of the area affected during the last peak outbreak. There is no consensus on whether this constitutes a trend. At the same time, the severity of outbreaks in New Brunswick decreased between 1949 and 2007. Studies that conclude there have been changes in the pattern of attack have attributed them to fire suppression, forest harvesting practices, temperature increases in the spring, insecticide spraying, and less reliable reconstructions of historical outbreaks.
MOUNTAIN PINE BEETLE

The mountain pine beetle is native to western North America and at least four large-scale outbreaks have occurred in B.C. in the last 120 years. The disturbance has changed in the last decade, however, with an infestation of unprecedented intensity in B.C. In 2005, it spread to Alberta where it has spread rapidly, including to jack pine/lodgepole pine hybrids. Attack results not only in changes to the forest, but can result in changes in water temperature and flow patterns, and increased soil and stream bank erosion. Beetle-killed stands are also more vulnerable to fire, and the combination of increased insect attack and past fire suppression can lead to an increase in intense, stand-replacing wildfires. The infestation appears to have peaked in B.C., likely because most host trees in the central plateau have already been attacked, and because variable terrain and greater tree diversity have slowed the spread in other areas.

Host availability, climate, and forest management practices all influence mountain pine beetle dynamics. Changes that have contributed to the current infestation include:

- The proportion of older age classes of lodgepole pine stands, which are more susceptible to attack, increased from 17% in the early 1900s to 55% in 2002, largely as a result of fire suppression and harvest practices that change forest structure.
- Climate has changed since 1920 to become more suitable for the beetle. Warmer winters have led to increased beetle survival. Temperatures in spring and late fall also affect mortality. For example, earlier onset of spring has increased spring survival.
KEY FINDING 20. Fundamental changes in relationships among species have been observed in marine, freshwater, and terrestrial environments. The loss or reduction of important components of food webs has greatly altered some ecosystems.

**Food webs** are formed through linkages of the different organisms in a system, building on the primary producers (plants, algae, and microorganisms), and involving an array of consumers and decomposers.

Population cycles are regular periodic peaks and lows in animal abundance that are driven largely by the dynamics of some food webs. Food webs and population cycles are important because they shape the structure and function of ecosystems. Changes in species diversity are often related to changes in food webs.

An example of the far-reaching effects of severe reductions in an important part of a food web is the decline of cod and other predatory fish off the Atlantic coast. This loss of fish predators led to further ecosystem shifts, with, for example, large increases in shrimp (see Marine Biome).

Small invertebrates are important in Great Lakes food webs as they provide a link between the base of the web (algae, bacteria, and bits of dead organic matter) which they eat, and fish, which eat them. Since 1995, populations of Diporeia amphipods, historically abundant, widespread, and dominant in deep-water food webs, have declined drastically in all lakes except Lake Superior. These declines coincide with the introduction of invasive zebra and quagga mussels, but the continuing downward trend is more complex, likely with several interacting causes. Declines in Diporeia have had major impacts on Great Lakes food webs, with both forage fish and commercial species negatively affected. For example, when Diporeia declined, growth and body condition of lake whitefish declined significantly in areas of lakes Huron, Ontario, and Michigan.
Declines in terrestrial predators

Most large native carnivores, including wolverine, have severely declined in abundance or have been extirpated from much of their ranges in the more populated regions of North America. Remaining ranges and larger populations are generally in the north and west of the continent. In the Newfoundland Boreal Ecozone, the wolf, a native top predator, was extirpated in the 1920s. Eastern coyotes, first sighted in the ecozone in 1987, have become a major predator, feeding on a variety of species and competing with native predators such as bear, lynx, and red fox.

In the Mixedwood Plains Ecozone, changes in predators and hunting, combined with milder winters and increased forage on lands altered by forestry and agricultural activities, have meant that populations of white-tailed deer have grown rapidly in recent decades. Foraging by high numbers of deer has altered forest plant communities, thereby affecting habitat for other species, including insects, birds, and small mammals.

In the Prairies, the decline of the gray wolf began with the extirpation of the plains bison in the late 1800s and continued due to overharvest of ungulates and predator control. The loss of the wolf has changed predator-prey dynamics. In southeastern Alberta, western coyote abundance increased 135% between the periods 1977 to 1989 and 1995 to 1996.

The change in top predators from wolves, which mainly hunted ungulates, to western coyotes, which eat a wider range of foods and are not major ungulate predators, has shifted the abundance and distribution of prey species.

Trends in population cycles

Population cycles are especially important features in boreal forest and tundra, Canada's largest terrestrial ecosystems. Herbivores are at the heart of these systems. The 10-year snowshoe hare cycle drives the cycles of many bird and mammal predators in the boreal forest, particularly lynx and coyote. The hare cycle itself is a result of interaction between predation and the vegetation that forms the hares' food supply. In Arctic tundra, lemmings and other small rodents drive population dynamics of many predators.

Global Trends

In northern Europe, population cycles in lemmings, voles, grouse, and insects have been weakening over large areas since the early 1990s. Some studies show linkages to climate change, especially to the effects of warmer winters.
KEY FINDINGS

21. **Biodiversity monitoring, research, information management, and reporting** Long-term, standardized, spatially complete, and readily accessible monitoring information, complemented by ecosystem research, provides the most useful findings for policy-relevant assessments of status and trends. The lack of this type of information in many areas has hindered development of this assessment.

22. **Rapid changes and thresholds** Growing understanding of rapid and unexpected changes, interactions, and thresholds, especially in relation to climate change, points to a need for policy that responds and adapts quickly to signals of environmental change in order to avert major and irreversible biodiversity losses.
BIODIVERSITY MONITORING, RESEARCH, INFORMATION MANAGEMENT, AND REPORTING

**KEY FINDING 21.** Long-term, standardized, spatially complete, and readily accessible monitoring information, complemented by ecosystem research, provides the most useful findings for policy-relevant assessments of status and trends. The lack of this type of information in many areas has hindered development of this assessment.

**Biodiversity monitoring** is the process of determining status and tracking changes in living organisms and the ecological complexes of which they are a part. **Biodiversity monitoring is important** because it provides a basis for evaluating the integrity of ecosystems, their responses to disturbances, and the success of actions taken to conserve or recover biodiversity. **Research** addresses questions and tests hypotheses about how these ecosystems function and change and how they interact with stressors. Ecological **research** provides the context for interpreting these monitoring results. Policy and management needs guide the development of monitoring.

A comprehensive review of the status of Canada’s ecological monitoring and information systems is beyond the scope of this report. This section presents observations and lessons learned about the strengths and weaknesses of information and its availability for assessing status and trends of Canada’s ecosystems.

**Global Trends**

Measuring progress towards the global target of reducing the rate of biodiversity loss by 2010 relies on monitoring species abundance, threat of extinction, extent and condition of habitats, and ecosystem goods and services. The United Nations reports that this global target has not been met. The United Nations reports that this global target has not been met.1

**ECOSYSTEM TRENDS: HOW GOOD ARE THE DATA?**

<table>
<thead>
<tr>
<th>Good to fair for some trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes climate trends, some animal population trends, and trends that can be measured across large areas using remote sensing (like sea-ice extent and mountain pine beetle effects) or through national databases (like protected areas). Quality of data can vary with region – for example, the majority of stream-flow monitoring stations are in the southern half of the country and near population centres. There are excellent, valuable datasets for many local and regional trends. Some examples: geese arrival dates at Delta Marsh, acidity levels in Boreal Shield lakes, contaminants in Great Lakes fish, and status of commercially valuable fish species.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poor for some trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are good data for some specific areas and time periods – but the big picture is often missing. Coverage is not good enough to understand some important trends at the biome level – such as changes in extent of coastal habitats and wetlands. Trends in many species groups and in ecosystem aspects important to biodiversity, such as permafrost, food web structures, and the spread of all but a few invasive species, are inferred from data from a few locations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Missing for some trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Includes trends in processes and species groups that are undoubtedly important for the maintenance of healthy ecosystems and that may be undergoing significant change. There is little to no information on trends in processes like decomposition and pollination and on trends for most non-commercial species, non-flowering plant species, invertebrates, and smaller organisms like soil bacteria. The result is that trends for these ecosystem components are not reported in this assessment.</td>
</tr>
</tbody>
</table>
Piecing together information from many disparate sources is currently the only way to assess ecosystem status and trends.

Current ecosystem monitoring is conducted at different spatial and time scales, measures different parameters, and uses different protocols for data collection and analysis. The result is a mosaic of information, reflected in the gaps in this assessment and in the mid to low confidence assigned to many key findings. This is a long-standing problem for Canada, as for other countries, and can only be resolved through attention to setting policy-relevant monitoring priorities and to design and consistent operation of long-term monitoring systems.

Assessment capacity can be improved through maintaining and building on existing long-term monitoring, but new initiatives may be required to meet policy needs.

Monitoring programs most useful for this assessment had good statistical design, consistent protocols, and broad spatial coverage based on ecosystems, rather than jurisdictions. Their value in measuring trends and detecting rapid and unexpected change increased with consistency and length of records. Few such programs with long-term records exist in Canada, and none exist for many important ecological components. Some trend records are out of date due to cuts to environmental monitoring since the 1990s. Some new initiatives started in the past decade will provide trend information for future assessments – for example, monitoring and assessment of ecological integrity of national parks and monitoring of cumulative impacts in Alberta ecosystems – but many gaps remain. Canada also faces a shortage in taxonomic expertise, which hampers some biodiversity monitoring.

Routine government monitoring programs designed for resource management also provide trend information on aspects of ecosystems – but are often limited in their applicability to biodiversity assessment. For example, some forest inventory systems group tree species by commercial use, while, for biodiversity assessment, trees need to be grouped by ecological significance. There is scope for adapting some management-focused monitoring to fill gaps in ecological monitoring.

Ecological research is an important resource for trend data. Research programs based on multi-disciplinary approaches provided this assessment with some of the best insights into changes in ecosystem functions and structures. However, monitoring associated with research is often short term, ending when the research cycle is over. Monitoring programs that involve community volunteers, such as the Breeding Bird Survey, are another important resource. Investment in program design, data management and reporting, as well as ongoing training and support to volunteers, ensures that results are consistent, long-term, and relevant.

Traditional and local knowledge are rarely incorporated into monitoring programs and were underutilized in this assessment.

Documented Aboriginal Traditional Knowledge (ATK) available in the public domain was compiled for this assessment, but for the most part it was not incorporated effectively. Efforts to insert ATK into reports on status and trends raised concerns about presenting excerpts of knowledge out of their cultural context and concerns about representativeness of the knowledge, especially as time periods and spatial scales were often not specified. Local observation and knowledge of change (not restricted to Aboriginal Peoples) is a related, underutilized resource. Bringing different knowledge systems together in complementary ways remains a challenge for ecological monitoring and assessment.
Biodiversity Monitoring

Improving publishing practices, as well as information management and archiving, would make monitoring results more accessible for policy and decision-making.

Overall, information on ecosystem status and trends in Canada is very scattered – it is difficult to find out what is available and where it is located and the information itself is of variable quality. Improvements require coordination and attention to data management and publication practices.

Information management is crucial to the integrity, long-term usefulness, and accessibility of monitoring results. Effective monitoring programs include organization and documentation of datasets, secure storage in long-term, searchable archives, and regular review and quality checks. With advances in technology, datasets have become larger and more complex, thereby requiring more resources to manage. At the same time, techniques for analyzing data spatially and for sharing data across networks present opportunities for viewing and synthesizing environmental information in new ways – and also increase the need for coordinated data policies and standards.

New technologies and applications are expanding horizons in biodiversity monitoring.

Remote sensing (using data collected by satellite) is increasing in usefulness for ecological monitoring, a trend that should continue with lengthening time series and if advances continue to be made in the development of applications and analytical capacity. Remote sensing, when verified and complemented with data from ground-based observations, can provide consistent, repeatable measurements of changes in ecosystems across broad scales. There are, however, limitations to what can be detected from space. For example, only major changes to prairie wetlands can be detected because small, dried-up wetlands are usually indistinguishable from the surrounding land.

Observations on the Accessibility of Information for this Assessment

- Published scientific literature was the most accessible and useful source of information for most aspects of the assessment, particularly papers that presented monitoring results in relation to research on ecosystems and stressors.
- Also useful, though sometimes more difficult to locate, were well-referenced assessment reports (on regions and on themes) and results-oriented reports produced through monitoring programs.
- Some comprehensive datasets were accessible, mainly through government agencies, but other, especially older, datasets were difficult or impossible to track down. An advancement that contributed to this assessment is the move to including digital supplemental information, like data and maps, with publications.
- Many unpublished reports and websites accessed were out of date and/or did not have sufficient information about the data they were based on to make them useful and credible sources.

Examples of Use of Remote Sensing in this Assessment

Analysis of ice-cover seasons on large lakes using remote sensing allowed trends to be derived for the Arctic, a region with few ground-based observations. Remote sensing also improved detection of large forest fires, provided trends for Arctic sea-ice extent, measured broad-scale change in Western Arctic vegetation at treeline, and provided trends in primary productivity across the country. One-time analyses of land cover and forest fragmentation provided measures of status, with potential to provide trends in the future.
Policy-relevant ecosystem status and trends information is best delivered through a partnership of policy, research, and monitoring.

Information gaps identified while developing this assessment are documented in thematic and ecozone* technical reports. Common themes emerged:

1. Poor understanding of thresholds, baselines, and natural ranges of variability in ecosystems
2. Limited information on changes in food web structures
3. Little research and monitoring that addresses cumulative impacts over time and impacts from interacting stressors
4. Little information for assessing trends in capacity of ecosystems to provide goods and services
5. Growing need for information on responses of ecosystems to climate change
6. Trends in abundance and other measures, such as reproductive success, available for only a few species groups
7. Poor understanding of biodiversity status, trends, and ecological processes in some dominant biomes including aquatic ecosystems, wetlands, boreal forests, and coastal zones
8. Poor monitoring coverage for less-populated and harder-to-access regions

Specific information needs arise within ecozones* that are often aspects of the more general information gaps. Well-designed biodiversity monitoring adapts to address regional needs while maintaining a set of core measurements for comparison across regions and over time. Monitoring is needed to detect changes over time and space, and research is needed to understand the significance of these changes – this is an iterative process. Networks based on ecosystem components (like permafrost) or species groups (like seabirds) play a strong role in fostering dialogue and coordination between these two aspects of ecosystem science.

This summary shows examples of common themes and ecozone*-specific needs identified for the marine ecozones*.

**SOME INFORMATION NEEDS FOR MARINE ECOTOZONES**

**BEAUFORT SEA**
- Benthic community trends
- Status and trends of seabirds (poorly understood relative to Eastern Arctic)

**NORTH COAST AND HEGE STRAIT**
- Source of excessive marine mortality of some fish, including salmon, eulachon, and herring
- Trends in plankton (only available for the southern edge of the ecozone*)

**WEST COAST VANCOUVER ISLAND**
- Ecology and long-term trends for groundfish

**STRAIT OF GEORGIA**
- Trends in nutrient levels and changes in deepwater chemistry
- Cause of change in timing of zooplankton biomass peak and impact on food webs

**COMMON TO ALL ECOTOZONES**
- Status and trends related to coastal biome
- Long-term trends in fish and zooplankton, and their food web linkages
- Accurate population abundance estimates
- Accurate status and trends estimates, lacking for many species, particularly benthic and non-commercial species

**CANADIAN ARCTIC ARCHIPELAGO**
- Consequences of reduction/loss of multi-year ice
- Information on Arctic char and its habitat
- Trend data for water column structure

**HUDSON BAY, JAMES BAY, AND FOXE BASIN**
- Ecological impact of decreasing freshwater inputs from rivers
- Impact of a new top predator, the killer whale

**NEWFOUNDLAND AND LABRADOR SHELVES**
- Population dynamics and distribution of capelin and other small pelagic species

**ESTUARY AND GULF OF ST. LAWRENCE**
- Significance of changes in zooplankton
- Coastal productivity and its contribution to productivity of the ecozone*

**GULF OF MAINE AND SCOTIAN SHELF**
- Ecology and trends in the deep water beyond the Scotian Shelf

---

Research and monitoring, working together, are needed to fill these gaps.
KEY FINDING 22. Growing understanding of rapid and unexpected changes, interactions, and thresholds, especially in relation to climate change, points to a need for policy that responds and adapts quickly to signals of environmental change in order to avert major and irreversible biodiversity losses.

Ecosystems are dynamic complexes of plants, animals, and microorganisms, interacting with natural forces, human actions, and changing conditions. Ecosystems can adapt to certain levels of stress, however their capacity to recover from disturbance may be lowered by biodiversity loss and cumulative impacts. A point may be reached where the ecosystem undergoes a rapid, irreversible shift from one state to another. This is usually detected as a large, rapid, and persistent change in relative abundances of organisms, especially species that we notice (such as vegetation) or that we exploit (such as fish stocks).

The point at which a shift is inevitable is called a threshold or tipping point.1, 2 Thresholds preceding rapid changes are often difficult to predict, but may themselves be preceded by early-warning signals like increased variability or slower recovery from a disturbance.3 Climate change is very likely to lead to threshold-type ecosystem responses, many of them irreversible.2 Many aspects of ecosystems are not currently, or regularly, monitored and much remains unknown about how Canada’s ecosystems function. Climate change adds uncertainty and is projected to lead to responses that lie outside the ranges of historical records.2

Recognizing that rapid change occurs is important because it has implications for policy. Ecosystem responses are often unexpected, especially owing to interactions among stressors.

Early warning signals are not always detected in time, especially when ecosystem monitoring is absent or inadequate or when the measurement uncertainty is so large that change cannot be detected until a threshold has been crossed. Management policies need to be designed to minimize the social, economic, and environmental impacts of unpredictable change when it inevitably occurs. Designing “safe-fail” policies provides a measure of insurance.

Action can, however, be taken before thresholds are crossed and policy options become restricted and expensive. This involves increasing Canada’s capacity to detect and interpret the signals of ecological change and, at the same time, strengthening the science-policy interface by targeted and timely delivery of research results to policy and decision makers.

AN EXAMPLE OF RAPID AND UNEXPECTED CHANGE

The combined Smith and Rivers inlets sockeye salmon stock was historically one of the largest and most valuable salmon populations in B.C., supporting commercial fishing, canneries, and First Nations fisheries. Numbers of returning salmon declined suddenly in the early 1990s, likely due to poor marine survival during migration through the North Coast and Hecate Strait Ecozone4 and into the Gulf of Alaska.4 The specific cause and location of this mortality is unknown.

SOCKEYE SALMON RETURNING TO SMITH AND RIVERS INLETS, B.C.

Thousands of fish, 1970 to 2008

Source: Crawford and Irvine, 20095
Some examples from this assessment

Even with moratoria on fishing and reduced harvesting, action in response to declines in marine fisheries resulting from overfishing in the Atlantic and Pacific has not always been successful. The lack of recovery of some fish stocks is likely related to alteration of food webs and other aspects of ecosystems, making it difficult to return to past conditions. Earlier interventions might have improved prospects for recovery.

Since invasive non-native species and other changes took hold in the Great Lakes, large annual investments are needed to keep this altered system producing the ecosystem services that were provided naturally in the past.

Fragmentation of landscapes is known to lead to the loss of habitat and species. It is difficult to measure the incremental changes in species themselves – but action to maintain large, intact landscapes will likely slow the rate of biodiversity loss.

Fire and insect disturbances have strong relationships with temperature and with forest practices. Severity and spread of certain forest insects and incidence of fire are likely to increase due to climate change. Policy options are available and have a good chance of success, including adapting fire and forestry management practices.

Invasive non-native species, including parasites, are often detected when they are just beginning to spread. Monitoring and early intervention have prevented the spread of some potentially harmful invasive non-native species, such as the gypsy moth in western Canada.

About 20 common species of birds are showing signs of widespread decline and the causes are unclear. Adapting research and monitoring to find out why is a first step in taking action to halt or reverse these declines.
RAPID CHANGES AND THRESHOLDS

Slow, incremental change may not seem important until thresholds are taken into account.

Ocean acidification, caused by uptake of carbon dioxide from the atmosphere, occurs in some Canadian marine ecosystems and is an emerging issue in others; the rate of change is slow. Research and global change models provide good evidence that acidification will continue to increase as a result of climate change. Some ocean acidity thresholds are well known because they are chemical and physiological and are relatively easy to define – when the water becomes too acidic, calcium carbonate shells and skeletons cannot form properly, affecting shellfish, corals, and other sea creatures. (See Marine Biome.)

The historical distribution of native grasslands, the most endangered of Canada’s biomes, has been greatly reduced, mainly through conversion for agriculture. There are several types of grasslands, each supporting a distinct mix of species, including many species at risk. The natural processes that maintained grasslands in the past, like fire and grazing by free-roaming bison herds, are now absent or modified. Development and recreation continue to convert and fragment the land in some areas and the spread of invasive non-native species and changes in grazing practices continue to alter the composition and structure of the vegetation. Each type of grassland will have its own threshold beyond which it will no longer be able to support its unique mix of species. (See Grasslands Biome.)

Stressors may interact in unexpected ways to produce surprises.

Nutrient loading to the Great Lakes was a problem that led to collaborative action between the United States and Canada, starting in the 1970s, to reduce nutrient inputs and clean up the lakes. These measures were successful – water quality improved, harmful algal blooms and oxygen depletion problems decreased, and diversity of native algal species increased. However, as lakeshore areas continued to be modified, human populations surrounding the lakes continued increasing and invasive non-native species have become more prevalent, altering many of the lakes’ characteristics. Although regulation continues to limit nutrient inputs, some combination of the changes that are taking place in the lakes has resulted in reappearance of harmful algal blooms in some near-shore areas. (See Nutrient Loading.)

Global Trends

Pressures on global ecosystems are increasing the likelihood of rapid and unexpected changes such as outbreaks of pests and diseases, catastrophic floods and landslides, desertification, fisheries collapse, and species extinctions.
Summer sea-ice extent is shrinking, a rapid change that is now well established. The decline of multi-year ice may have reached or crossed a threshold. Ecological consequences are emerging, especially in Hudson Bay, where the ice-free season has increased the most. Examples include a reduction in Arctic cod, a fish that is associated with ice; an increase in capelin, a fish more tolerant of warmer water; reduced body condition of polar bears; and range expansion of a new top predator, the killer whale, into the bay. (See Marine Biome and Ice Across Biomes.)

Large predators, including wolves, have declined or have been extirpated from much of their original ranges in the more populated areas of Canada. Smaller predators, like western coyotes and raccoons, have in turn expanded their ranges and increased in numbers. These more adaptable predators eat a wide range of food items, altering abundance of other species. In the Mixedwood Plains, with fewer predators, white-tailed deer have become more abundant, leading to major changes in forest vegetation. (See Food Webs.)

Coastal erosion in the Atlantic Maritime Ecozone is increasing, threatening wetlands, beach, and dune ecosystems. Development and hardening of the foreshore have made coastal ecosystems more susceptible to erosion. Rise in sea level, reduced sea ice, and more tropical storms in the Atlantic, all related to climate change, accelerate the rate of erosion. (See Coastal Biome.)

Some lands and waters, due to their underlying geology, have greater capacity to buffer acid deposition than others, so the threshold beyond which ecosystem damage occurs varies from place to place, even with the same levels of acid deposition. Once the threshold is crossed, high levels of impacts occur rapidly. For example, certain salmon rivers in Nova Scotia have been particularly affected because of their lack of capacity to buffer acid. (See Acid Deposition.)
The information in Canadian Biodiversity: Ecosystem Status and Trends 2010 draws on a series of technical background reports prepared and reviewed by many experts from across Canada. They are of two types, thematic reports and ecozone-specific reports. Information on how to access these reports can be obtained from www.biodivcanada/ecosystems.

**Technical thematic reports**


**Technical thematic report published elsewhere**

Technical Ecozone Status and Trends Reports

**Arctic** *Lead authors:* J. Eamer, L. Harding and G. Henry  
*Contributing authors:* S. Carrière, J. Goulet, C. Haas, J. Paquet, M. Reichard, R. Smith, and L. Torretti

**Atlantic Maritime** *Lead author:* S. Eaton  
*Contributing authors:* J. Barr, T. Hayes, G. MacAskill, J.-P. Savard, R. Siron, I. Turcotte, and A.-M. Turgeon

**Boreal Cordillera** *Lead authors:* M. Nelitz and L. Harding  
*Contributing authors:* M. Austin, B. Drinkwater, C. Eamer, T. Jung, G. Kuzyk and S. Leverkus

**Boreal Plains** *Lead authors:* D. Haughland and A. Lennie  
*Contributing authors:* K. Hannah, H. Kling, N. McCutchen, and E. Shipley

**Boreal Shield** *Lead authors:* I. Turcotte, L. Venier, and D. Kirk  

**Great Lakes** *Lead author:* S. Garden  

**Hudson Plains** *Lead authors:* K.F. Abraham, L.M. McKinnon, Z. Jumean, S.M. Tully, L.R. Walton, and H.M. Stewart  

**Mixedwood Plains** *Lead authors:* D. Krahn and K. Taylor  

**Montane Cordillera** *Lead author:* L. Harding  
*Contributing author:* B. Harrison

**Newfoundland Boreal** *Lead authors:* S. Pardy-Moores, J. Humber, and T. Leonard  
*Contributing authors:* J. Blake, J. Gosse, C. Hanel, G. Luther, M. McGrath, D. Pelley, C. Sheffield, and S. Squires

**Pacific Maritime** *Lead authors:* A. Eriksson, F. Backhouse, and A. Leslie  
*Contributing authors:* M. Austin, D. Buffett, and R. Smith

**Prairies** *Lead authors:* J. Thorpe and B. Godwin  

**Taiga Cordillera** *Lead authors:* N. Maclean and J. Eamer  
*Contributing authors:* S. Carrière, J. Hawkes, T. Jung, W. Nixon, and B. Oosenbrug

**Taiga Plains** *Lead author:* A. Gunn  
*Contributing authors:* S. Carrière and J. Eamer
Taiga Shield  
**Lead author:** A. Gunn  
**Contributing authors:** D. Cantin, S. Carrière, J. Eamer, R. Lussier, A. Penn, R. Schetagne, and R. Verdon

Western Interior Basin  
**Lead authors:** D. Gayton, L. Harding, and T. Hayes  
**Contributing authors:** K. Brock, B. Harrison, G. Kuzyk, and R. Rae

Arctic Marine (including the Beaufort Sea, Canadian Arctic Archipelago, and the Hudson Bay, James Bay, and Foxe Bay)  
**Lead authors:** A. Niemi, J. Paulic, and D. Cobb

Estuary and Gulf of St. Lawrence  

Gulf of Maine and Scotian Shelf  
**Lead authors:** T. Worcester and M. Parker

Newfoundland and Labrador Shelves  
**Lead author:** N. Templeman

North Coast and Hecate Strait  
**Lead authors:** P. Cummins and R. Haigh

Strait of Georgia  
**Lead authors:** S. Johannessen and B. McCarter

West Coast Vancouver Island  
**Lead authors:** D. Ianson and L. Flostrand

Other contributors

- R. Hélie, J.-F. Gobeil, and R. Vanderkam provided protected area data and analysis.
- Canadian Centre for Remote Sensing provided data.
- D. Hurlburt prepared a review and synthesis of Aboriginal Traditional Knowledge.
- V. Schaefer prepared a draft report on urban biodiversity.
- The International Institute for Sustainable Development and ESSA Technologies Ltd. prepared initial scoping and background work and assisted with workshop facilitation.
- G. Sheehy, J. Lord, and C. Eamer prepared first drafts of some of the evidence for key findings ecozone summary reports.
- Several contractors and government staff facilitated expert workshops that were held across Canada.
- Hundreds of experts from government, academia, and non-government organizations across Canada attended workshops to help guide the technical reports and identify issues.
- Hundreds of experts from academia, government, non-government organizations, and private consultants provided peer review for case studies, key findings, and technical background reports.

Photo credits

Cover (from left to right): Prairies, iStock/tbob; Lord Selkirk, Provincial Park; iStock/Photawa; wetland, Allen Woodcliffe; Thousand Islands, Environment Canada; Arctic wildflowers, Government of Yukon; shorebirds, Jason Puddifoot; Maragee Valley, iStock/oworthy; Tombstone Mountains, YK, Trish Hayes; killer whales, Jason Ford, Fisheries and Oceans Canada; salmon, iStock/brytta; McIntyre Creek, Claire Earner; Wood Buffalo National Park, Parks Canada; sunset, graphicjackson; fall leaves, Canadian Forest Service; polar bears, iStock/Visual Communications; canola field, iStock/graphicjackson; drying salmon, iStock/fkienas; Taiga Plains - Boreal forest, Canadian Forest Service; tidepool, Richard Cannings; lake reflection, iStock/kavram; maple leaves, Risa Smith

iStock.com: p.1, tidepool, scarletsails; p.1, Maragee Valley, oworthy; p.1, polar bears, Visual Communications; p.2, Pacific Maritime, cathryn155; p.2, grasslands, 4loops; p.2, Lord Selkirk, Provincial Park, Photawa; p.3, tide pool, scarletsails; p.3, sea ice, jwebb; p.4, children, andrewmedina; p.5, killer whales, ElsvanderGun; p.6, smoke stack, lanChrisGraham; p.6, alder buds, serg269; p.6, drying salmon, fkienas; p.7, canola field, graphicjackson; p.7, leopard frog, maimai; p.7, salmon, R_Koopmans; p.8, fire, cfish; p.8, coyote, 4loops; p.9, sunset, graphicjackson; p.17, Gros Morne National Park, mmac72; p.19, grasshopper sparrow, WilliamSherman; p.30, Lord Selkirk, Provincial Park, Photawa; p.31, low tide, liquidfog; p.32, snow goose, stavoilk; p.35, tidepool, scarletsails; p.35, mussels, eddyfish; p.36, great blue heron, BirdImages; p.39, fish, Ishiak1; p.41, sea ice, jwebb; p.41, polar bears, Visual Communications; p.42, Angel glacier, aeropw; p.58, northern leopard frog, maimai; p.62, bearded seal, micheldenisj; p.62, fireweed, kongxinzhu; p.63, killer whales, ElsvanderGun; p.70, sky, micheldb; p.70, creek, imagecreation; p.70, geese, niknikon; p.70, wetlands, Orchidpoet; p.71, alder buds, serg269; p.72, geese, scol22; p.74, bucket, huronphoto; p.74, ice, byrtta; p.75, drying salmon, fkienas; p.76, bird, Whiteway; p.81, canola field, graphicjackson; p.81, northern pintail, LUGO; p.81, nest, nlimmen; p.82, tigerswallow, ScoopySue; p.82, rattlesnake, RMBoiton; p.82, bunchberry, epicphotography; p.83, bullfrog, Valmol48; p.83, gray treefrog, HKPNC; p.83, northern leopard frog, maimai; p.83, western chorus frog, marmold; p.85, salmon, R_Koopmans; p.87, BC Interior, MarvinBeatty; p.90, downy woodpecker, bm1949; p.90, eastern meadowlark, Canon_Bob; p.90, American kestral, pollycon; p.90, house finch, MichaelStubblefield; p.90, mourning warbler, PaulTesier; p.91, ducks, 4loops; p.91, king eider; eyecoe; p.97, fire, cfish; p.100, Lake Huron, janef; p.101, coyote, 4loops; p.104, weather monitoring, DonNichols; p.104, wetlands, byrtta; p.104, bee, icam; p.105, binder, molka; p.105, teeeep, RyersonClark; p.106, data; nnilz; p.107, lake reflection, kavram; p.107, waves, LesHoward; p.108, salmon, PKoopmans; p.109, dead fish, OKRAD; p.109, road, wolv; p.109, trees, chapin31; p.110, rusty chain, syacci; p.110, grasslands, TreePhoto; p.111, sunset, graphicjackson; p.111, deer, KeithBinn; p.111, beach, onepony; p.111, smoke stacks, lanChrisGraham

dreamtime.com: p.8, leaves, Leif Algotsson; p.27, Oldman River; Bev Ram; p.28, lakes, Andre Nantel; p.67, Skaha lake, Timothy Epp; p.83, Algonquin Provincial park, Elena Elissieva; p.83, american toad, David Anderson; p.83, green frog, Electrochriss; p.83, spring peeper, Jason Ross; p.83, wood frog, Mircea Costina; p.95, leaf, Leif Algotsson; p.99, beetle damage, Timothy Epp
REFERENCES

OVERVIEW

About this assessment


BIOMES

1. Forests


2. Grasslands


3. Wetlands


4. Lakes and rivers


5. Coastal


6. Marine


7. Ice across biomes


**HUMAN/ECOSYSTEM INTERACTIONS**

**8. Protected areas**

9. Stewardship

10. Invasive non-native species


11. Contaminants


12. Nutrient loading and algal blooms


13. Acid deposition


14. Climate change


15. Ecosystem services


16. Agricultural landscapes as habitat


17. Species of special interest: economic, cultural, or ecological


Amphibians


Fishes using freshwater habitat


18. Fraser River Environmental Watch data provided by J. Morrison. 2010. Fraser River mean summer temperature, update to Patterson et al., 2007. Unpublished data.


**Birds**


40. Nebel, S., Mills, A.M., McCracken, J.D. and Taylor, P.D. Declines of aerial insectivores in North America follow a geographic gradient. Submitted for publication.


**Caribou**


18. Primary productivity


19. Natural disturbances


20. Food webs


SCIENCE/POLICY INTERFACE

21. Biodiversity monitoring, research, information management, and reporting


22. Rapid changes and thresholds


